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ABSTRACT

Automatic music style classification is an important, but
challenging problem in music information retrieval. It has
a number of applications, such as indexing of and search-
ing in musical databases. Traditional music style classifi-
cation approaches usually assume that each piece of music
has a unique style and they make use of the music con-
tents to construct a classifier for classifying each piece into
its unique style. However, in reality, a piece may match
more than one, even several different styles. Also, in this
modern Web 2.0 era, it is easy to get a hold of additional,
indirect information (e.g., music tags) about music. This
paper proposes a multi-label music style classification ap-
proach, called Hypergraph integrated Support Vector Ma-
chine (HiSVM), which can integrate both music contents
and music tags for automatic music style classification.
Experimental results based on a real world data set are pre-
sented to demonstrate the effectiveness of the method.

1. INTRODUCTION

Music styles (e.g., Dance, Urban, Pop, and Country) are
one of the top-level descriptions of music content. Con-
sequently, automatic Music Style Classification (MSC for
short) is a key step for modern music information retrieval
systems [7]. There has already been some work toward
automatic music style classification. For example, Qin
and Ma [10] introduce an MSC system that takes MIDI
as data source and mines frequent patterns of different mu-
sic. Zhang and Zhou [18] present a study on music clas-
sification using short-time analysis along with data mining
techniques to distinguish among five music styles. Zhou et
al. [19] propose a Bayesian inference based decision tree
model to classify the music into pleasurable and sorrowful
music. Although these methods are highly successful, two
major limitations exist.

• These are single-label methods in that they can as-
sign only one style label, but many pieces of music
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may map to more than one style.

• They only make use of the music content informa-
tion. However, with the rapid development of web
technologies, we can easily obtain much richer in-
formation of the music (e.g., tags, lyrics, and user
comments). How to incorporate these pieces of
information into the MSC process effectively is a
problem worthy of researching.

In this paper, we propose a multi-label MSC method that
can integrate three types of information: (1) audio sig-
nals (MFCC coefficients, STFT, DWCH); (2) music style
correlations; (3) music tag information and correlations.
Specifically, we construct two hyper-graphs, one on music
style labels and the other on music tags, where the vertices
on the hypergraphs correspond to the data points, and the
hyperedges correspond to the music styles and the tags,
respectively. We first integrate those two hypergraphs to
obtain a unified hypergraph. Next, assuming that similar
music tends to have similar style labels on the hypergraph,
we propose a new, SVM-like multilabel ranking algorithm.
The algorithm uses a hypergraph Laplacian regularizer and
can be efficiently solved by the dual coordinate descent
method. Finally, we propose a predictor of the size of la-
bel set to determine the number of labels assigned to for
each piece of music independently. To demonstrate the
efficiency and effectiveness of our proposed method, we
conducted a set of experiments applying the method to a
real world data.

The rest of this paper is organized as follows. In Sec-
tion 2 we briefly introduce preliminaries on our key con-
cept, the hypergraph. In Section 3 we describe our HiSVM
algorithm. We describe in Section 4 the audio features ex-
tracted from the data set as well as the style and tag infor-
mation of the data set. We present the results of experi-
ments in Section 5 and conclude the paper in Section 6.

2. PRELIMINARIES

A hypergraph is a generalization of a graph, in which
edges, called hyperedges, may connect any positive num-
ber of vertices [1, 11]. Formally, a hypergraph G is a pair
(V, E) where V is a set of vertices and E ⊆ 2V − ∅ is a
set of hyperedges. An edge-weighted hypergraph is one in
which each hyperedge is assigned a weight. We use w(e)
to denote the weight given to e. The degree of a hyperedge
e, denoted as δ(e), is the number of vertices in e. For a
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standard graph (sometimes called a “2-graph”) the value
of δ is 2 for all edges. The degree d(v) of a vertex v is
d(v) =

∑
v∈e,e∈E w(e). The vertex-edge incidence matrix

H ∈ R|V |×|E| is defined as: h(v, e) = 1 if v ∈ e and 0
otherwise. We thus have

d(v) =
∑

e∈E
w(e)h(v, e) (1)

δ(e) =
∑

v∈V
h(v, e). (2)

Let De (respectively, Dv and W) be the diagonal matrix
whose diagonal entries are d(v) (respectively, δ(e), and
w(e)).

The graph Laplacian is the discrete analog of the
Laplace-Beltrami operator on compact Riemannian man-
ifolds [12]. The graph Laplacian has been widely used
in unsupervised learning (e.g., spectral clustering [9]) and
semi-supervised learning (e.g. [16, 20]). Below we will
sketch a commonly used algorithm by Chung [3], called
the Clique Expansion Algorithm, for constructing the hy-
pergraph Laplacian.

The Clique Expansion Algorithm constructs a tradi-
tional 2-graph Gc = (Vc, Ec) from the original hypergraph
G = (V, E) and views the Laplacian of Gc to be the Lapla-
cian of G. Suppose Vc = V and Ec = {(u, v)|u, v ∈ e, e ∈
E}. The edge weight wc(u, v) of Gc is defined by

wc(u, v) =
∑

u,v∈e,e∈E
w(e) (3)

An interpretation of this definition is that the edge weight
matrix, Wc, of Gc can be expressed as

Wc = HWHT (4)

Let Dc be the diagonal matrix such that

Dc(u, u) =
∑

v

wc(u, v).

Then the combinatorial Laplacian, Lc, of Gc is given by

Lc = Dc −Wc = Dc −HWHT (5)

and the normalized Laplacian, Ln, is given by

Ln = I−D−1/2
c HWHT D−1/2

c . (6)

From Eq. (5) and (6), we have

Ln = D−1/2
c LcD−1/2

c . (7)

In our music style classification, we construct two hyper-
graphs: the style hypergraph Gs and the tag hypergraph Gt.
The vertices of Gs and Gt are simply the data points. The
hyperedges of Gs correspond to the style labels, i.e., each
hyperedge in Gs contains all the data points that belong to
a specific style category. Similarly, each hyperedge of Gt

contains all the data points that own the corresponding tag.
Figure 1 shows an intuitive example on the music style and
tag hypergraphs.

"Who is he"

"Strip"

Soul

Figure 1. An example of the music style (left) and tag
(right) hypergraph. The nodes on the hypergraphs corre-
spond to the music “Angola Bond”, “Who is he”, “Dan-
gerous”, “Pleasure”, and “Strip”. The regions of different
colors correspond to the different hyperedges. The hyper-
edges correspond to music styles in the left panel and to
music tags in the right panel.

3. MULTI-LABEL LEARNING WITH
HYPERGRAPH REGULARIZATIONS

In this section we will present in detail our proposed multi-
label classification algorithm with hypergraph regulariza-
tion. Suppose there are n training samples {(xi, yi)}n

i=1,
where each instance xi is drawn from some domain X ⊆
Rm and its label yi is a subset of the output label set Y =
{1, · · · , k}. For example, if xi belongs to categories 1, 3,
and 4, then yi = {1, 3, 4}. We use X = (x1, · · · ,xn)T to
represent the data feature matrix.

Our basic strategy is to solve the multi-label learning by
combing a label ranking problem and a label number pre-
diction problem. That is, for each instance we produce a
ranked list of all possible labels, estimate the number of la-
bels for the instance, and then select the predicted number
of labels from the list.

Label ranking is the task of inferring a total order over
a predefined set of labels for each given instance [5].
Generally, for each category, we define a linear function
fi(x) = 〈wi,x〉 + bi (i = 1, · · · , k), where 〈·, ·〉 is the
inner product and bi is a bias term. One often deals with
the bias term by appending to each instance an additional
dimension

xT ← [xT , 1], wT
i ← [wT

i , bi] (8)

then the linear function becomes fi(x) = 〈wi,x〉. The
goal of label ranking is to order {fi(x), i = 1, · · · , k} for
each instance x according to some predefined empirical
loss function and complexity measures. Elisseeff and We-
ston [6] apply the large margin idea to multi-label learn-
ing and present an SVM-like ranking system, called Rank-
SVM, given as follows:

min
1
2

k∑

i=1

‖wi‖2 + C
n∑

i=1

1
|yi||yi|

∑

(p,q)∈yi×yi

ξipq

s.t. 〈wp −wq,xi〉 ≥ 1− ξipq, (p, q) ∈ yi × yi

ξipq ≥ 0 (9)
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where C ≥ 0 is a penalty coefficient that trades off the
empirical loss and model complexity, yi is the comple-
mentary set of yi in Y , |yi| is the cardinality of the set
yi, i.e., the number of elements of the set yi, and ξipq(i =
1, · · · , n; (p, q) ∈ yi × yi) are slack variables. The margin
term

∑k
i=1 ‖wi‖2 controls the model complexity and im-

proves the model generalization performance. Although
this approach performs better than Binary-SVM in many
cases, it still does not model the category correlations
clearly. Next, we will describe how to construct a hyper-
graph to exploit the category correlations and how to in-
corporate the hypergraph regularization into the problem
in the form of Eq. (9).

3.1 Basic Framework

To model the correlations among different categories effec-
tively, a hypergraph is built where each vertex corresponds
to one training instance and a hyperedge is constructed for
each category which includes all the training instances rel-
evant to the same category. Here, we apply the Clique Ex-
pansion algorithm to construct the similarity matrix of the
hypergraph. It means that the similarity of two instances
is proportional to the sum of the weights of their com-
mon categories, thereby captures the higher order relations
among different categories. This kind of hypergraph struc-
ture was used in the feature extraction by spectral learn-
ing [13]. However, we consider how to apply the relation
information encoded in the hypergraph to directly design
the multi-label learning model. Intuitively, two instances
tend to have a large overlap in their assigned categories if
they share high similarity in the hypergraph. Formally, this
smoothness assumption can be expressed using the hyper-
graph Laplacian regularizer, trace(F̂T LF̂). Therefore we
can introduce the smoothness assumption into problem Eq.
(9) and obtain

min
1
2

k∑

i=1

‖wi‖2 +
1
2
λtrace(F̂T LF̂) +

C

n∑

i=1

1
|yi||yi|

∑

(p,q)∈yi×yi

ξipq

s.t. 〈wp −wq,xi〉 ≥ 1− ξipq, (p, q) ∈ yi × yi

ξipq ≥ 0 (10)

Here F̂ is the matrix of label prediction; that is, it is the
n × k matrix (fj(xi)), 1 ≤ i ≤ n, 1 ≤ j ≤ k. Also, L is
the n×n hypergraph Laplacian and λ > 0 is a constant that
controls the model complexity in the intrinsic geometry of
input distribution.

3.2 Optimization Strategy

Problem (10) is a linearly constrained quadratic convex op-
timization problem. To solve it, we first introduce a dual
set of variables, one for each constraint, i.e., αipq ≥ 0 for
〈wp −wq,xi〉 − 1 + ξipq ≥ 0 and ηipq for ξipq ≥ 0. Af-
ter some linear algebraic derivation, we obtain the dual of

Problem (10) as

min g(α) =
1
2

k∑
p=1

n∑

h,i=1

βphβpix
T
h (I + λXT LX)−1xi

−
n∑

i=1

∑

(p,q)∈yi×yi

αipq

s.t. 0 ≤ αipq ≤ C

|yi||yi|
(11)

where α denotes the set of dual variables αipq and I is the
(m + 1)× (m + 1) identity matrix.

Once the variables αipq that minimize g(α) are ob-
tained, we can compute wp by

wp = (I + λXT LX)−1
n∑

i=1

βpixi (12)

where

βpi =
∑

(j,q)∈yi×yi

tpijqαijq (13)

tpijq =





1
−1
0

j = p
q = p

if j 6= p and q 6= p
(14)

Compared to the primal optimization problem, the dual
has k(m + 1) less variables and includes simple box con-
straints. The dual can be solved by the dual coordinate
descent algorithm shown in Algorithm 1.

Algorithm 1 A dual coordinate descent method for
HiSVM

Start with α = 0 ∈ Rnα (nα =
∑n

i=1 |yi||yi|), and the
corresponding wi = 0 (i = 1, · · · , k)
while 1 do

for i = 1, · · · , n and (j, q) ∈ yi × yi do
1. G = (wp −wq)T xi − 1

2. PG =





G
min(0, G)
max(0, G)

if 0 < αipq < C
|yi||yi|

if αipq = 0
if αipq = C

|yi||yi|
3. If |PG| 6= 0,

α∗ipq ← min
(
max

(
αipq − G

2Aii
, 0

)
, C
|yi||yi|

)

wp ← wp + (α∗ipq − αipq)(I + λXT LX)−1xi

wq ← wq − (α∗ipq − αipq)(I + λXT LX)−1xi

end for
if ‖α∗ −α‖/‖α‖ < ε(e.g. ε = 0.01) then

Break
end if
α = α∗

end while

3.3 Predicting the Size of Label Set

So far we have only provided a label ranking algorithm. To
identify the final labels of data, we need to design an ap-
propriate threshold for each instance to determine the size
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of its corresponding label set. Here, we adopt the strategy
proposed by Elisseeff and Weston [6], which treats thresh-
old designing as a supervised learning problem. More con-
cretely, for each instance x, define a threshold function
h(x) and the size of label set s(x) = ‖{j | fj(x) >
h(x), j = 1, · · · , k}‖. Our goal is to obtain h(x) through
a supervised learning method. For the training data xi,
its label ranking values, f1(xi), · · · , fk(xi), can be given
by the foregoing ranking algorithm, and its corresponding
threshold h(xi) is simply defined by

h(xi) =
1
2
(min
j∈yi

{fj(xi)}+ max
j∈yi

{fj(xi)})

Once the training data (x1, h(x1)), · · · , (xu, h(xu))
are generated, we can use off-the-shelf learning methods
to learn h(x). In this paper, Linear Support Vector Regres-
sion [15] has been adopted to solve h(x). We note there
that all the label ranking based algorithms toward multi-
label learning can use this postprocessing approach to pre-
dict the size of label set.

4. DATA DESCRIPTION

For experimental purpose, we created a data set consisting
of 403 artists. For each artist, we include a representative
song and also obtain the style and tag description.

4.1 Music Content Features

For each song, a single vector of 80 components is ex-
tracted. The single vector contains the following audio
features:

1) Mel-Frequency Cepstral Coefficients (MFCC): Mel-
Frequency Cepstral Coefficients (MFCC) is a feature set
that is very popular in speech processing. MFCC is de-
signed to capture short-term spectral based features. The
features of MFCC are computed as follows: First, for
each frame, the logarithm of the amplitude spectrum based
on short-term Fourier transform is calculated, where the
frequencies are divided into thirteen bins using the Mel-
frequency scaling. Next, this vector is decorrelated using
discrete cosine transform. The resulting vector is called the
MFCC vector. In our experiments, we compute the mean
and variance of each bin over the frame for the two vectors
(before and after decorrelation). Thus, for each sample,
MFCC occupies 52 components.

2) Short-Term Fourier Transform Features (STFT): This
is a set of features related to timbral textures and is not
captured using MFCC. It consists of the following types
of features: Spectral Centroid, Spectral Rolloff, Spectral
Flux, Zero Crossings, and Low Energy. More detailed de-
scriptions of STFT can be found in [14]. In our experi-
ments, we compute the mean for all types and the variance
for all but zero crossings. STFT thus occupies 12 compo-
nents.

3) Daubechies Wavelet Coefficient Histograms
(DWCH): Daubechies wavelet filters are a set of fil-
ters that are popular in image retrieval (see [4]). The
Daubechies Wavelet Coefficient Histograms, proposed

in [8], are features extracted in the following manner:
First, the Daubechies-8 (db8) filter with seven levels of
decomposition (or subbands) is applied to 30 seconds
of monaural audio signals. Then, the histogram of the
wavelet coefficients is computed for each subband. Then
the first three moments of each histogram, i.e., the average,
the variance, and the skewness, are calculated from each
subband. In addition, the subband energy, defined as the
mean of the absolute value of the coefficients, is computed
from each subband. More details of DWCH can be found
in [8].

4.2 Music Tag Information

Music tags are descriptions given by visitors or music tag
editors from the website to express their idea on the mu-
sic artists. Tags can be as simple as a word or as com-
plicated as a whole sentence. Popular tags are terms like
“rock,” “black metal,” and “indie pop.” Long tags are like
“I love you baby can I have some more.” The tags are
not as formal as style description created by music experts,
but they give us ideas of how large population music lis-
teners think about the music artists. In our experiments,
tag data was collected from the popular music website
http://www.last.fm. In order to understand how important
a tag is, and how accurately it reflects the characteristics
of an artist, the frequencies of all the tags to describe the
artists (tag counts) were also used in the experiments.

A total of 8,529 tags were collected. Each artist has at
most 100 tags and at least 3 tags. On average, each artist
is associated with 89.5 tags. Note that, each artist may be
described by some tags for more than once, for example,
Michael Jackson has been tagged with “80s” for 453 times.

4.3 Music Style Information

Style data were collected from All Music Guide
(http://www.allmusic.com). These data are created by mu-
sic experts to describe the characteristics of music artists.
Style terms are nouns like Rock & Roll, Greek Folk, and
Chinese Pop as well as adjectives like Joyous, Energetic,
and New Romantic. Styles for each artist/track are differ-
ent from the music tags described in the above, since each
style name for one artist appears only once.

A total of 358 styles were found. Each artist has at most
12 and at least one style type. On average, every artist is
associated with 4.7 style labels.

5. EXPERIMENTS

We performed experiments on HiSVM and four real-world
multi-label learning models arising in text categorization,
image classification, video indexing and gene function pre-
diction. Comparisons are made with Binary-SVM and
Rank-SVM [6].

5.1 Methods and Experimental Setup

The data set information we used to evaluate our pro-
posed approach has been introduced in the previous sec-
tion, where we use 70% of the data for training (282 pieces
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total), and the remaining 30% for testing (121 pieces total).
Here, the four models used for multi-label learning are as
follows:

• Binary-SVM. In this model, first, for each category,
train a linear SVM classifier independently. Then,
the labels for each test instance can be obtained by
aggregating the classification results from all the bi-
nary classifiers. Here, we use LIBSVM [2] to train
the linear SVM classifiers.

• Rank-SVM [6]. In this model, first, using Eq. (9),
we implement Algorithm 1 (λ = 0) to train a lin-
ear label ranking system. We then apply the pre-
diction method for the size of label set described in
Section 3.3 to design the threshold model. Finally,
for each test instance, we combine the label ranking
and threshold models, thereby infer its labels.

• HiSVM. This is our proposed algorithm. The algo-
rithm is composed of three steps: (1) we implement
Algorithm 1 to achieve a linear label ranking system;
(2) we apply the method in Section 3.3 to design the
threshold model; (3) for each test instance, we com-
bine the label ranking and threshold models to infer
its labels.

• HSVM. HSVM is the style Hypergraph regularized
SVM method, which is the same as the HiSVM
method except that it only makes use of the style
hypergraph and does not use the tag hypergraph.

• GSVM. GSVM is similar to HiSVM except we con-
struct a traditional 2-graph where each vertex repre-
sents one training instance in GSVM rather than a
hypergraph. In order to compute the Laplacian, the
weight wij of the edge between xi and xj is defined
as follows

wij = exp(−ρ‖xi − xj‖2) (15)

where ρ is a nonnegative constant. Apparently, the
category correlation information is not used during
the construction of 2-graph in GSVM.

Some details of HiSVM are in order. We use Eq. (5) to
construct both the style hypergraph Laplacian Ls and the
tag hypergraph Laplacian Lt, where the weight w(e) of the
hyperedge is calculated by

w(e) = exp(−νde) (16)

Here ν is a nonnegative constant, and de is the average
intra-class distance (N.B. Each hyperedge corresponds to
one specific style or tag):

de =

∑
u,v∈e ‖xu − xv‖2
δ(e)(δ(e)− 1)

(17)

The smaller the average intra-class distance, the larger the
corresponding hyperedge weight. Finally we combine Ls

and Lt to obtain a unified hypergraph Laplacian L by

L =
1
2
(Ls + Lt)

Table 1. A contingency table
YES is correct NO is correct

Assigned YES a b

Assigned NO c d

which is used in the rest of the inferences and experiments.
In the above four models, it is necessary to iden-

tify the best value of model parameters such as C,
λ and ν on the training data. Here, the grid search
method with 5-fold cross validation is used to de-
termine the best parameter values. For the penalty
coefficient C in the Linear SVM, we tune it from
the grid points {10−6, 10−5, · · · , 100, 101, · · · , 106}; for
the tradeoff parameter λ, we tune it from the grid
points {10−6, 10−5, · · · , 100, 101, · · · , 106}; the scale
parameter ν and ρ are tuned from the grid points
{2−6, 2−5, · · · , 20, 21, · · · , 26}.

5.2 Evaluation Metrics

We choose two measures, F1 Macro and F1 Micro [17],
as the evaluation metrics for multi-label learning. Suppose
there are a total of S style categories. Then for each cate-
gory, we can construct a contingency table as follows: Let
a (respectively, b) be the number of pieces that are cor-
rectly assigned (respectively, not correctly assigned) to this
style category, and let c (respectively, d) be the number
of pieces that are incorrectly rejected (respectively, cor-
rectly rejected) by this style category (see Table 1). Let
r = a/(a + c) and p = a/(a + b), where the former is
called the recall and the latter the precision. Then the F1

score of this style category can be computed as

F1 =
2pr

p + r
(18)

The F1 Macro can be computed by first calculating the
F1 scores for the per-category contingency tables and then
averaging these scores to compute the global means. F1

Micro can be computed by first constructing a global con-
tingency table, each of whose cell value is the sum of the
corresponding cells in the per-category contingency tables,
and then use this global contingency table to compute the
Micro F1 score.

5.3 Experimental Results

Table 2 illustrates the experimental results on our HiSVM
algorithm along with the four other methods on the data
set. The values in Table 2 are the F1 Micro values and
F1 Macro values averaged over 50 independent runs to-
gether with their standard deviations. From the table we
can clearly observe the following:

• Multi-label methods perform better than the simple
Binary-SVM method.

• The consideration of label correlations is helpful for
the final algorithm performance.
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Figure 2. The relative error ‖α∗ − α‖/‖α‖ vs. itera-
tion step plot of our proposed dual coordinate descent al-
gorithm for solving HiSVM.

Table 2. Performance comparisons of four models on the
Last.fm dataset

Methods F1 Macro F1 Micro
Binary-SVM 0.4231± 0.0025 0.4317± 0.0103
Rank-SVM 0.4526± 0.0114 0.4733± 0.0036

GSVM 0.5018± 0.0054 0.5244± 0.0103
HSVM 0.5365± 0.0120 0.5509± 0.0072
HiSVM 0.5613± 0.0069 0.5802± 0.0116

• Hypergraph regularization is better than flat two-
graph regularization because it can incorporate the
high-order label relationships naturally.

• The incorporation of tag information is helpful for
the final classification performance.

Figure 2 shows how the relative error ‖α∗ − α‖/‖α‖
varies with the process of iteration using the dual coordi-
nate descent method introduced in Algorithm 1. From the
figure we clearly see that with the process of coordinate de-
scent, the relative error will decrease and it takes approxi-
mately 30 steps to converge. This validates the correctness
of our algorithm experimentally.

6. CONCLUSION

We propose a novel multi-label classification method
called Hypergraph integrated SVM (HiSVM) for music
style classification. Our method can not only take into ac-
count the music style correlations, but also the music tag
correlations. We also propose an efficient dual coordinate
descent algorithm to solve it, and finally experimental re-
sults on a real world data set are presented to show the
effectiveness and correctness of our algorithm.
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