
10th International Society for Music Information Retrieval Conference (ISMIR 2009)

MODELING HARMONIC SIMILARITY USING A GENERATIVE
GRAMMAR OF TONAL HARMONY

W. Bas de Haas

Utrecht University

Bas.deHaas@cs.uu.nl

Martin Rohrmeier

University of Cambridge

mr397@cam.ac.uk

Remco C. Veltkamp

Utrecht University

Remco.Veltkamp@cs.uu.nl

Frans Wiering

Utrecht University

Frans.Wiering@cs.uu.nl

ABSTRACT

In this paper we investigate a new approach to the simi-

larity of tonal harmony. We create a fully functional re-

modeling of an earlier version of Rohrmeier’s grammar of

harmony. With this grammar an automatic harmonic anal-

ysis of a sequence of symbolic chord labels is obtained

in the form of a parse tree. The harmonic similarity is

determined by finding and examining the largest labeled

common embeddable subtree (LLCES) of two parse trees.

For the calculation of the LLCES a new O(min(n, m)nm)
time algorithm is presented, where n and m are the sizes

of the trees. For the analysis of the LLCES we propose

six distance measures that exploit several structural char-

acteristics of the Combined LLCES. We demonstrate in a

retrieval experiment that at least one of these new meth-

ods significantly outperforms a baseline string matching

approach and thereby show that using additional musical

knowledge from music cognitive and music theoretic mod-

els actually helps improving retrieval performance.

1. INTRODUCTION

Harmonic Similarity is a relatively new research topic with-

in Music Information Retrieval (MIR) that is concerned

with determining the similarity of the chord sequences in

songs and enables users to search for songs on the basis

of their harmony. Retrieval based on harmony offers obvi-

ous benefits: it allows for finding cover songs (especially

when melodies vary), songs of a certain family (like Blues

or Rhythm Changes), or variations over standard basses in

instrumental baroque music, to name a few. So far, very

few measures of harmonic similarity have been proposed.

De Haas et al. [1] developed a distance measure based on

Lerdahl’s Tonal Pitch Space [2].

When researching MIR, it is important to realize that

only part of the information needed for good similarity

judgment can be found in the musical data. Musically

schooled as well as unschooled listeners have extensive

knowledge about music [3,4] and one important task of a

MIR researcher is to select or develop the appropriate mu-

sic cognitive and music theoretical models that provide the

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2009 International Society for Music Information Retrieval.

knowledge needed for making good similarity judgments.

We strongly believe that such a model is necessary, and

that systems without such additional musical knowledge

are incapable of capturing a large number of important

musical features. In this study we report a new method

of harmonic similarity matching that applies a remodeling

of Rohrmeier’s [5] phrase-structure grammar for tonal har-

mony as underlying cognitive and music theoretical model.

In analogy to linguistics, various hierarchical models

of musical structure have been proposed since the 1980s

and have been brought up recently in cognitive and com-

putational discussions [6–8]. In this context, Rohrmeier’s

generative grammar of diatonic harmony [5] transfers no-

tions about the hierarchical organization of tonal music

[6,7] to the area of harmony. It is based on the assump-

tion that, within a sequence of harmonies, different chords

have different degrees of stability and dependency, based

on their position within the hierarchical structure. In a

chord sequence several chords may be replaced, inserted

or omitted in such a way that the harmonic structure re-

mains intact, whereas the changes of structurally impor-

tant anchor chords may result in large structural modifi-

cations of the entire dependency structure of the harmony

sequence. These dependency features and relationships re-

semble constituent structure and dependencies in linguis-

tic syntax and can be modeled with a grammatical formal-

ism [9].

These variable relationships between chords and their

structural roles motivate the rationale not to base our har-

mony matching methods on sequence matching methods–

which assume the equal importance of all chords in a se-

quence–but on a hierarchical formalization that incorpo-

rates the differences in structural function. Figure 1, dis-

playing two versions of the jazz standard Take the ‘A’ train,

illustrates this idea. Even though both sequences appear to

be substantially different when compared element by ele-

ment, an analysis of their formal dependencies reveals that

both derive from a common harmonic pattern that is repre-

sented by the parse trees and fits human intuition.

We present a fully functional remodeling of Rohrmeier’s

grammar [5], which parses sequences of symbolic chord

labels and returns parse trees like the ones in Figure 1, in

section 3. A parse tree is more than a harmonic analysis

alone, since it contains all the structural relations of the

harmonies used in a song, and is therefore very suitable for

determining harmonic similarity. We compare parse trees

by finding and examining the combined Largest Labeled

549

Oral Session 7: Harmonic & Melodic Similarity and Summarization

Piece

P

PCP

t

I

C69

d

V

V1

G13

ii

Dm9

V/V

V/V1

II7

D7b9

ii/V

vi

Am9

P

PCP

t

I

CMaj7

d

V

G7b9

P

HCP

d

d1

d2

V

V1

G13

ii

Dm9

V/V

II7

D7

s1

IV2

F69

s

IV

IV1

FMaj7

V/IV

I7

C7

t

I

C69

P

HCP

d

V

V1

G13

ii

Dm9

V/V

V/V1

II7

D7b9

ii/V

vi

Am9

t

I

CMaj7

P

HCP

d

d1

V

G13

s

ii

Dm9

t

I

C69

P

HCP

d

V

V1

G13

ii

Dm9

V/V

V/V1

II7

D7b9

ii/V

vi

Am9

t

I

CMaj7

P

HCP

d

d1

V

G13

s

ii

Dm9

t

I

C69

P

HCP

d

V

V1

G13

ii

Dm9

V/V

V/V1

II7

D7b9

ii/V

vi

Am9

t

I

CMaj7

Piece

P

PCP

t

I

CMaj7

d

d1

V

G7

s

ii

Dm7

P

PCP

t

I

CMaj7

d

V

V1

G7

ii

Dm7

V/V

II7

D7

P

PCP

t

I

CMaj7

d

V

Vsub

bII7

Db7

P

HCP

d

d1

V

V1

G7

ii

Dm7

V/V

II7

D7

s

IV

FMaj7

t

I

CMaj7

P

HCP

d

V

V1

G7

ii

Dm7

V/V

II7

D7

Rept

t1

I1

CMaj71

t

I

CMaj7

P

HCP

d

V

V1

G7

ii

Dm7

V/V

II7

D7

t

I

CMaj7

Figure 1. Two parse trees of different versions of the same jazz standard Take the ‘A’ train. The leafs of the tree represent

the actual chords of the sequence.

Common Embeddable Subtree (LLCES). The LLCES is

the tree that can be included in both parse trees while main-

taining the labels and the ancestor relations. In section 4.2

we present a new algorithm that finds the LLCES. Using

the LLCES we define a series of similarity measures for

tonal harmony.

Contribution: First, we present a remodeling of a for-

mal grammar for tonal harmony and propose solutions for

some of the typical problems of its application. Second, we

present a new O(min(n, m)nm) time algorithm that calcu-

lates the LLCES, where n and m are the sizes of the trees.

Third, six LLCES based distance measures are defined to

compare the parse trees. Last, the retrieval performance

of these distance measures is experimentally verified on a

dataset of 72 symbolic chord sequences of jazz standards.

2. RELATED WORK

In the last century, numerous formal theoretical approaches

to western tonal music have been proposed. Formaliz-

ing Schenker’s theory [6], Lerdahl and Jackendoff [7] pro-

posed a generative theory that organized western tonal mu-

sic by recursive hierarchical dependency relationships be-

tween musical elements in terms of time-span reduction

and prolongation structure. They formalized the interac-

tion between these structures with metrical and grouping

structure in terms of constraint based preference rules. Sim-

ilarly, there is some theoretical evidence that tonal har-

mony is organized in a comparable, hierarchical way. Early

attempts by Kostka and Payne ([10] ch. 13) and Baroni

[11] suggest that harmony is organized in hierarchical lay-

ers. Current theoretical approaches [5,12–15] suggest that

the structure of harmony sequences exceeds the simplic-

ity of a straightforward chord transition table (or finite-

state grammar [9]), like Piston’s table of root progressions

[16], and may be modeled by hierarchical, context-free

or phrase-structure grammars [9]. Pachet [17] proposes

a set of rewrite rules for jazz harmony similar to Steed-

man’s grammar [12]. He shows that these rules could be

learned form chord sequence data in an automated fashion.

Rohrmeier [5] gave an encompassing account how tonal

harmonic relationships may be formalized using a genera-

tive context-free grammar with variable binding.

3. A GRAMMAR FOR TONAL HARMONY

The generative formalism proposed by Rohrmeier [5] ex-

pands on earlier approaches in a number of ways. Steed-

man’s approach [12,13] is merely concerned with Blues

progressions and, featuring only seven context-sensitive

rules (with variations), omits a number of theoretically im-

portant features to extend to a broader domain. Rohrmeier’s

approach extends on these ideas and gives an overarching

account of tonal harmony and tonal-phrase structure inde-

pendently of a specific style or musical form. In addition, it

proposes to incorporate the structural distinctions between

form, theoretical harmonic function [18], scale degree pro-

longation [6,7] and surface feature realization into differ-

ent levels of the syntactic derivation. The present study

proposes a remodeling of the grammar without modulation

and with limited local tonicization and scale adaptation in

order to reduce the complexity for the implementation of

a first-stage working system. The current remodeling was

optimized for jazz, but the aim is to develop a set of core

rules that explain basic harmony structures which can be

augmented with style specific rules.

The grammar incorporates four levels: a phrase level,

functional level, scale-degree level and surface level. The

phrase level divides a piece into phrases, the functional

level specifies the functional role a certain scale-degree has

within a phrase. The scale-degree captures the relation be-

tween the chord and the key and the surface level expresses

the actual chord with all its possible additions, inversions,

etc.

Below, the main rules of the grammar are listed in or-

der to give an outline of the architecture of the grammar.

A piece always consists of one or more phrases (P). On

this phrase level the grammar distinguishes two types of

phrases: phrases which end on a perfect cadence (PCP)

and phrases which end with a half-cadence (HCP). Per-

550

10th International Society for Music Information Retrieval Conference (ISMIR 2009)

fect cadence phrases are distinguished by ending with a

tonic function (t) upon which all subordinate harmonic el-

ements are dependent, whereas half-cadence phrases force

a phrase to end with a dominant function (d) which results

in a tonicization of, or a perfect or imperfect cadence on

the dominant.

1. Piece → P+

2. P → PCP

3. P → HCP

4. PCP → d t+ | d d t+ | t d t

5. HCP → t+ d

At the functional level, the grammar encapsulates core

relationships between the three main harmonic functions:

tonic (t), dominant (d) and subdominant (s).

6. d → s d

7. t → tpg

These functional rules can be applied recursively, but fi-

nally translate into scale-degrees. Rule 9 deals with certain

forms of parallels (tpg).

8. t → I

9. tpg → vi | iii

10. d → V | vii0

11. s → ii | IV

The functional level also incorporates a number of addi-

tional prolongational rules that allow for the derivation of

more distant harmonic structures such as the preparatory

use of iii and tritone substitutions. Rule 12 incorporates

a feature specifically added for modeling the prototypical

II-V-I sequences in jazz harmony that are less frequent in

other styles.

12. x → V(x) x | ii(x) V(x) x for any scale degree x

13. IV → iii IV

14. V(x) → bII(x) for any scale degree x

At the surface level scale degree symbols are translated

into the actual surface chord. These translation steps are

straightforward when the key is known beforehand. For

instance, a VI symbol in the key of C minor would trans-

late into an A♭-chord. In addition, elaborations of chords

are added at this level of description: a surface realization

of a VI chord may result in a A♭6 chord. Some of these

surface elaborations of chords are tied to their structural

functions (strong typing), e.g. an Em7♭5 chord label indi-

cates a subdominant function ii in a ii-V-I sequence, or a

D7 chord label indicates a dominant function (except in

blues contexts where minor sevenths loose their functional

connotation).

3.1 Implementation and Parsing

There are some additional rules that have been implemented,

but are not described here. Among these are rules for typ-

ical voice-leading and prolongational structures and some

typical borrowings from the parallel key. Since we have

not incorporated modulation yet, it is necessary to label

these phenomena to be able to explain the remainder of

the piece. Furthermore, there are rules that deal with typi-

cal well-known diminished chord transitions in various de-

scending and ascending forms.

The grammar as specified above is not strictly a con-

text free grammar, because rule 12 and rule 14 use a vari-

able binding. However, by expanding a rule for every el-

ement x that it holds, a set of context free rules can be

created that yields the exact same outcome. Having a con-

text free grammar, a free Java implementation [19] of an

Earley Parser [20] is used to parse the chord sequences in

O(n3) time, where n is the number of chords.

Context free grammars often create multiple ambiguous

parse trees. To select the optimal parse tree out of the set

of parse trees, we provided the rules with weights (set by

hand) and defined the total weight of a parse tree as the

product of the weights of the rules used in its construction.

Because of this, some rules have less chance to be used in

the final derivation. This allows to select the best tree from

the ambiguous parse trees. The complete grammar as well

as the lead-sheets of the examples in Fig 1 are available

online 1 .

4. COMMON HIERARCHICAL STRUCTURES

In this section we present six distance measures for the

parse trees generated by the grammar discussed in the pre-

vious section. For the comparison of parse trees, we pro-

pose an approach based on the problem of tree inclusion,

which is elaborately dealt with in [21]. Given the parse

trees of two songs, the general idea is to find the collec-

tion of largest labeled common embeddable subtrees (LL-

CESs) for every combination of phrases. The LLCES is the

largest tree that is included in both parse trees. This means

that there exists a one-to-one mapping from the nodes of

the LLCES to the nodes with the same label in both parse

trees that preserves ancestor relations, but not necessarily

parent relations. When processing harmony parse trees,

this is a natural thing to do because typically a chord pro-

gression is augmented by adding a structure to the left

branch and repeating the right branch, e.g. when a Dm is

prepared by an A7 chord. Hence, if both trees are similar,

the LLCES reflect the structure of the parse trees it is gen-

erated from, and if both trees are dissimilar, the resulting

LLCES will be much smaller and less grammatical. In the

next sections we explain the calculation of the LLCES, and

how we use it to define six distance measures.

4.1 Preliminaries

A rooted tree is a structure denoted with P = (V, E,Proot),
where V is a finite set of nodes, E is the set of edges con-

1 http://give-lab.cs.uu.nl/music/

551

Oral Session 7: Harmonic & Melodic Similarity and Summarization

B

FA

G

XH

Y

E

A

YX

C

A

N

YX

M

LK

Figure 2. An example of a rooted by A that can be embed-

ded into two larger trees rooted by B and C.

necting nodes in V , and Proot is the root of the tree P . The

nodes of the parse trees generated by the grammar of sec-

tion 3 are all labeled and the label of node v is denoted with

label(v). The subtree of P rooted at node v is denoted with

P [v] and children(v) denotes the subset of V with nodes

that have v as parent. Similarly desc(v), denotes the dece-

dents of v, i.e. the subset of V that is contained in P [v]
and have v as ancestor. Furthermore we use a few addi-

tional functions, po(v) denotes the post order number that

is assigned to a node v in a postorder traversal. depth(P)
denotes the depth of a tree, i.e. the number of nodes in the

longest path from leaf to the root. Finally, the degree(P)
is the degree of a tree, i.e. the maximum number of chil-

dren.

We say that a tree P = (V, E, Proot) is included in a

tree T = (W, F, Troot) if there exists an embedding of P

into T . An embedding is an injective function f , mapping

each node in P to a node in T , that preserves labels and

ancestorship. Figure 2 shows an example of an included

tree. Note that a left-to-right ordering of the descendants is

not required. Formally, this means that for all nodes u and

v in P it is required that:

1. f(u) = f(v) if and only if u = v,

2. label(u) = label(f(v)),

3. u is an ancestor of v in P if and only if f(u) is an

ancestor of f(v) in T .

4.2 Largest Labeled Common Embeddable Subtree

We are not aware of an algorithm that calculates the largest

common embeddable subtree for labeled trees. Gupta and

Nishimura [22] have developed a O(n2.5 log n) time al-

gorithm for finding this tree for two unlabeled trees. The

algorithm we present here calculates the largest common

embeddable subtree for the labeled case and expands on

the general tree matching ideas as described in [21], ch. 3.

Algorithm 1 calculates the LLCES of two trees P =
(V, E, Proot) and T = (W, F, Troot). To store the nodes

of the subtrees of the LLCES the algorithm uses a table

M such that M [po(w)] stores the subtrees that can be em-

bedded into both P and T [w]. The algorithm builds the

LLCES up from the leaves by traversing the nodes of T and

P in postorder. When a node v with an identical label as w

is encountered (line 5), the algorithm creates a new node x

with the same label as v. In case w is a leaf, x is stored in

M (lines 8–9). In case w is an internal node, we look up

the subtrees in M that match the children of w. Because

the tree is processed in postorder these nodes were previ-

ously stored in M and can be retrieved from M [po(w′)]
for each child w′. If a previously stored subtree rooted by

Algorithm 1 Largest Labeled Common Embeddable Subtree

1: procedure LLCES(P,T)
2: M ← ∅

3: for all w ∈W in postorder do
4: for all v ∈ V in postorder do
5: if label(v) = label(w) then
6: x← new node
7: label(x)← label(v)
8: if children(w) = ∅ then
9: add x to M [po(w)]

10: else
11: for all w′

∈ children(w) do
12: for all x′

∈M [po(w′)] do
13: if x′

∈ desc(v) then
14: add (x, x′) to M [po(w)]
15: else
16: add x′ to M [po(w)]
17: end if
18: end for
19: end for
20: add x to M [po(w)]
21: end if
22: end if
23: end for
24: if M [po(w)] = ∅ then
25: for all w′

∈ children(w) do
26: add M [po(w′)] to M [po(w)]
27: end for

28: end if
29: end for
30: return M [po(Troot)]
31: end procedure

x′ is a descendant of v, this subtree becomes a child of the

new node x, by adding a new edge (x, x′) to M [po(w)]
(lines 10–15). Otherwise, if x′ is not a descendant of v,

x′ is stored in M [po(w)] (line 16). After all, a common

ancestor can show up in a next iteration. Finally, the new

subtree x is stored in M as well (line 20). If the label of

w does not match any of the labels of the nodes in P , the

subtrees stored in M for all children w′ of w are added

to M [po(w)] (lines 24–28). This process continues until

all nodes of T have been matched against all nodes of P

and finally M [po(Troot)], the LLCES of P and T , is re-

turned. A drawback of our algorithm is that it is incapable

of dealing with duplicate labels. Therefore we number the

duplicate labels that descent the same phrase.

The running time of the algorithm is dominated by the

lines 3-23. For each of the O(nm) combinations of w and

v (lines 3, 4) a constant time test is performed. Because the

labels are unique, only min(n, m) times each of the O(n)
nodes in the subtrees that has been stored in M [po(w)] so

far (line 12), is checked against each of the O(m) descen-

dants of node v (line 13). This results in a time complexity

for the whole algorithm of O(min(n, m)nm).

4.3 Distance Measures

We base the distance measures on the LLCES, but we do

not calculate the LLCES of two parse trees directly for two

reasons. First, as we can see in Figure 1, there are quite

some duplicate labels in the parse trees which our algo-

rithm cannot handle. Second, if a parse tree of a song con-

tains a repetition of a phrase that the matched song does

not have, the repeated phrase cannot be matched. To solve

552

10th International Society for Music Information Retrieval Conference (ISMIR 2009)

Piece

P

t

I

d

d1

V

s

ii

P

t

I

CMaj7

d

V

V1iiV/V

II7

P

PCP

t

I

CMaj7

d

V

P

HCP

d

d1

V

V1iiV/V

II7

D7

s

IV

FMaj7

t

I

P

HCP

d

V

V1iiV/V

II7

t

I

CMaj7

P

HCP

d

V

V1iiV/V

II7

t

I

CMaj7

Figure 3. The Combined LLCES for every combination of phrases of the parse trees of Take the ‘A’ Train as in Fig. 1.

these two problems we compare parse trees in a phrase-

wise fashion. For every phrase in the target tree T we

calculate the LLCES for every phrase of the pattern parse

tree P and pick the largest LLCES to create a Combined

LLCES (see Fig. 3). The duplicate labels are re-labeled per

phrase too in preorder (see the superscripts in Fig. 1 and

3). Because the number of duplicate labels per phrase is

small, the labellings will be nearly identical if two trees

have a similar harmonic structure. Note that if the two

parse trees T and P have a different number of phrases, the

structure of the Combined LLCES will differ if P is used

as a target tree, because for every phase in the T a LLCES

is constructed. This makes every Combined LLCES based

measure is asymmetrical.

We propose three distance measures for sequences of

symbolic chord labels based on the Combined LLCES:

1. Relative Combined LLCES Size Distance (Rel): By

dividing the number of nodes in the target tree T

by the number of nodes in the Combined LLCES a

distance measure between 0 and 1 is obtained that is

normalized by the size of T .

2. Grammar Violation Distance (Viol): if two trees are

not similar, the combined LLCES will contain con-

nections between nodes that cannot be explained by

the grammar. By dividing the number of nodes in the

target tree T (which are grammatical by definition)

by the number of grammatical nodes in the Com-

bined LLCES we obtain a distance measure between

1 and 0 that is normalized by the size of T .

3. Average Depth Distance (Dep): if trees are very sim-

ilar, the level of complexity in the harmonic structure

in the Combined LLCES will be comparable to the

level of complexity target tree T . By dividing the

average leaf depth of T by the average leaf depth of

the Combined LLCES, we obtain a distance measure

between 1 and 0, that is normalized by the size of T .

One can observe in Figure 1 that, having the actual parse

tree structure, the actual chord labels are not of much im-

portance anymore. Given two similar sequences, it is rather

arbitrary whether the chords labels match or not: the struc-

ture of the harmony determines the similarity. Therefore

we can remove each leaf node describing a surface chord

from the Combined LLCES and target trees. The structure

of the phrase, functional and scale-degree level remains un-

changed. As a consequence, this yields three additional

harmonic distance measures that are concerned with the

structure of the harmony only. Other Combined LLCES

distance measures can be thought of.

5. EXPERIMENT

We have evaluated the six LLCES based distance mea-

sures described in the previous section in an experiment.

We assembled a dataset of 72 symbolic chord label se-

quences extracted from user-generated Band-in-a-Box files

that were collected on the Internet. Band-in-a-Box is a

software package that generates accompaniment given a

certain chord sequence provided by the user. This dataset

consists of 51 different pieces of which 16 pieces contain

two or three versions, forming 16 song classes. These

pieces are all jazz standards from before the 1970’s and

can all be found in the Real Book [23] or similar sources.

All parse trees of these pieces are available online 2 . The

task is to retrieve the other versions of a song class, given

a certain query song from that class. All songs containing

more than one version are used as a query and the rank-

ings are analyzed by calculating the mean average preci-

sion (MAP). To place the results in perspective, we cal-

culate the edit distance [24] between all chord sequences,

represented as a string of chord labels, as a baseline mea-

sure.

The results are presented in Table 1. It seems that all

Combined LLCES based methods perform better than the

baseline edit distance, but only the difference between the

Viol distance measure without chord symbol nodes scores

significantly better than the baseline edit distance (p < .01,

two-tailed T-test). The results show therefore that the num-

ber of grammatical connections in the Combined LLCES

is a good indicator for harmonic similarity. The lack of

significance of the other measures might be explained by

the limited size of the relatively small dataset. However,

the experiment does show that a matching method that ana-

lyzes the structure of the harmony outperforms a sequence-

based method that does not use any musical knowledge.

6. CONCLUDING REMARKS

This paper introduced a new approach to harmonic simi-

larity. We showed that a grammar of tonal harmony can

2 http://give-lab.cs.uu.nl/music/

553

Oral Session 7: Harmonic & Melodic Similarity and Summarization

Chord Symbols No Chord Symbols

Distance: Rel Viol Dep Rel Viol Dep Edit

MAP: 0,79 0,81 0,72 0,81 0,86 0,73 0.67

Table 1. The MAP of the six Combined LLCES based

similarity measures and a baseline edit distance.

be adapted in such a way that is usable for matching har-

mony sequences. However, there are some open issues.

At the moment we cannot calculate distance measures to

pieces that do not parse and for every grammar there are

always pieces imaginable that do not parse. A solution to

this problem can be found in partial matching. Often only

one or two chords cannot be explained by the grammar. By

removing these chords and parse the left and the right side

separately, it is possible to obtain a parse tree that can be

used for matching.

A property of context free grammars is that sequences

can have multiple ambiguous parse trees. Using the gram-

mar presented here, many chord sequences are intrinsically

ambiguous and have multiple derivations. One solution

might be to incorporate intrinsically ambiguous parse trees

in the creation of the Combined LLCES. Nevertheless, it

is important to keep the number of unwanted ambiguous

parse trees as low as possible. By making the grammar

strongly typed and adding weights to rules, we controlled

the number and the selection of parse trees. Still, the gram-

mar as presented here features several problems with re-

spect to the parsing of phrase boundaries, which consti-

tutes a main source of ambiguities (as in Fig. 1). A set of

additional preference rules will be designed for future ver-

sions of the model to rule out unlikely phrase-boundaries.

These will be based on metrical information which is not

yet incorporated in the present model. Yet another way of

improving the expressive power of the grammar and limit-

ing the number of ambiguous parse trees at the same time,

is to start parsing with a very strict grammar and, only af-

ter a rejection of the chord sequence, to add more loosely

typed rules that can explain the more exotic harmonic phe-

nomena.

The research presented here demonstrates how a gram-

mar of harmony may characterize harmonic similarity in a

musical way. This will have a large impact on the quality

of the representation, analysis and retrieval of tonal music.

This research also provides a case study that demonstrates

the importance of cognitive and theoretic models of mu-

sic in the design of appropriate methods for MIR tasks that

have been neglected so far because of their inherent musi-

cal complexity.

7. ACKNOWLEDGMENTS

This work was supported by the Dutch ICES/KIS III Bsik

project MultimediaN and in part by Microsoft Research

through the European PhD Scholarship Programme.

8. REFERENCES

[1] W.B. de Haas, R.C. Veltkamp, and F. Wiering. Tonal Pitch
Step Distance: A Similarity Measure for Chord Progressions.

In Proceedings of the 9th International Conference on Music
Information Retrieval, pages 51–56, 2008.

[2] F. Lerdahl. Tonal Pitch Space. Oxford University Press, 2001.

[3] I. Deliège, M. Mélen, D. Stammers, and I. Cross. Musical
Schemata in Real Time Listening to a Piece of Music. Music
Perception, 14(2):117–160, 1996.

[4] E. Bigand. More About the Musical Expertise of Musically
Untrained Listeners. Annals of the New York Academy of Sci-
ences, 999:304–312, 2003.

[5] M. Rohrmeier. A Generative Grammar Approach to Dia-
tonic Harmonic Structure. In Anagnostopoulou Georgaki,
Kouroupetroglou, editor, Proceedings of the 4th Sound and
Music Computing Conference, pages 97–100, 2007.

[6] H. Schenker. Der Freie Satz. Neue musikalische Theorien und
Phantasien, 1935.

[7] F. Lerdahl and R. Jackendoff. A Generative Theory of Tonal
Music. MIT press, 1983.

[8] A.D. Patel. Language, Music, Syntax and the Brain. Nature
Neuroscience, 6:674–681, 2003.

[9] N. Chomsky. Syntactic Structures. Mouton, 1957.

[10] S. Kostka and D. Payne. Tonal Harmony with an Introduction
to 20th-century Music. McGraw-Hill, 1984.

[11] M. Baroni, S. Maguire, and W. Drabkin. The Concept of Mu-
sical Grammar. Music Analysis, 2(2):175–208, 1983.

[12] M. J. Steedman. A Generative Grammar for Jazz Chord Se-
quences. Music Perception, 2(1):52–77, 1984.

[13] M. J. Steedman. The Blues and the Abstract truth: Music
and Mental Models, chapter 15, pages 305 – 318. Psychol-
ogy Press, 1996.

[14] M. Chemillier. Toward a Formal Study of Jazz Chord Se-
quences Generated by Steedmans Grammar. Soft Computing-
A Fusion of Foundations, Methodologies and Applications,
8(9):617–622, 2004.

[15] S. Tojo, Y. Oka, and M. Nishida. Analysis of Chord Progres-
sion by HPSG. In Proceedings of the 24th IASTED interna-
tional conference on Artificial intelligence and applications,
pages 305–310. ACTA Press Anaheim, CA, USA, 2006.

[16] W. Piston. Harmony. Norton, W. W. & Company, New York,
1948.

[17] F. Pachet. Surprising Harmonies. International Journal of
Computing Anticipatory Systems, 4, 1999.

[18] H. Riemann. Vereinfachte Harmonielehre; oder, die Lehre
von den tonalen Funktionen der Akkorde. Augener, 1893.

[19] S. Martin. Pep is an Earley Parser. http://www.ling.ohio-
state.edu/˜scott/, 2007.

[20] J. Earley. An Efficient Context-free Parsing Algorithm. Com-
munications of the ACM, 13(2):94–102, 1970.

[21] P. Kilpeläinen. Tree Matching Problems with Applications to
Structured Text Databases. PhD thesis, Departement of Com-
puter Science, University of Helsinki, November 1992.

[22] A. Gupta and N. Nishimura. Finding Largest Subtrees and
Smallest Supertrees. Algorithmica, 21(2):183–210, 1998.

[23] Various Authors. The Real Book. Hal Leonard Corporation,
6th edition, 2004.

[24] V. I. Levenshtein. Binary Codes Capable of Correcting Dele-
tions, Insertions, and Reversals. Cybernetics and Control
Theory, 10(8):707–710, 1966.

554

