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ABSTRACT

A method for expressive melody synthesis is presented seek-
ing to capture the structural and prosodic (stress, direction,
and grouping) elements of musical interpretation. The in-
terpretation of melody is represented through a hierarchical
structural decomposition and a note-level prosodic annota-
tion. An audio performance of the melody is constructed
using the time-evolving frequency and intensity functions.
A method is presented that transforms the expressive anno-
tation into the frequency and intensity functions, thus giv-
ing the audio performance. In this framework, the problem
of expressive rendering is cast as estimation of structural
decomposition and the prosodic annotation. Examples are
presented on a dataset of around 50 folk-like melodies, re-
alized both from hand-marked and estimated annotations.

1. INTRODUCTION
A traditional musical score represents music symbolically
in terms of notes, formed from a discrete alphabet of pos-
sible pitches and durations. Human performance of music
often deviates substantially from the score’s literal inter-
pretation, by inflecting, stretching and coloring the music
in ways that bring it to life. Expressive music synthesis
seeks algorithmic approaches to this expressive rendering
task, so natural to humans.

There is really a great deal of past work on expressive
synthesis — more than can be summarized here, though
some of the leading authors give an overview of several
important lines of work in [1]. Most past work, for ex-
ample [2], [3], [4], as well as the many RENCON piano
competition entries, for example [5] [6], has concentrated
on piano music. The piano is attractive for one simple rea-
son: a piano performance can be described by giving the
onset time, damping time, and initial loudness of each note.
Since a piano performance is easy to represent, it is easy
to define the task of expressive piano synthesis as an es-
timation problem: one must simply estimate these three
numbers for each note.
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In contrast, we treat here the synthesis of melody, which
finds its richest form with “continuously controlled” in-
struments, such as the violin, saxophone or voice. This
area has been treated by a handful of authors, including
the KTH group [7], [8], as well as a number others, in-
cluding a commercial singing voice system. Continuously
controlled instruments simultaneously modulate many dif-
ferent parameters, leading to wide variety of tone color, ar-
ticulation, dynamics, vibrato, and other musical elements,
making it difficult to represent the performance of a melody.
However, it is not necessary to replicate any of these fa-
miliar instruments to effectively address the heart of the
melody synthesis problem. We will propose a minimal au-
dio representation we call the theremin, due to its obvi-
ous connection with the early electronic instrument by the
same name [9]. Our theremin controls only time-varying
pitch and intensity, thus giving a relatively simple, yet ca-
pable, representation of a melody performance.

The efforts cited above include some of the most suc-
cessful attempts to date. All of these approaches map ob-
servable elements in the musical score, such as note length
and pitch, to aspects of the performance, such as tempo
and dynamics. One example is the rule-based KTH sys-
tem, which grows out of several decades of focused effort.
In this system, each rule maps various musical contexts
into performance decisions, which can be layered, so that
many rules can be simultaneously applied. The rules were
chosen, and iteratively refined, by a music expert seeking
to articulate and generalize a wealth of experience into per-
formance principles. In contrast, the work of Widmer [2],
[4] takes a machine learning perspective by automatically
learning rules from actual piano performances. We share
the perspective of machine learning. In [4], phrase-level
tempo and dynamic curve estimates are combined with
the learned rule-based prescriptions, through a case-based
reasoning paradigm. That is, this approach seeks musical
phrases in a training set that are “close” to the phrase being
synthesized, using the tempo and dynamic curves from the
closest training example. As with the KTH work, the per-
formance parameters are computed directly from the ob-
servable score attributes with no real attempt to describe
any interpretive goals such as repose, passing tone, local
climax, surprise, etc.

Our work differs significantly from these, and all other
past work we know of, by explicitly trying to represent the
interpretation itself. Previous work does not represent the
interpretation, but rather treats the consequences of this in-
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terpretation, such as dynamic and timing changes. We rep-
resent the interpretation in two ways. This first uses a tree-
like structural decomposition that makes explicit various
levels of repetition or parallelism in the melody. This idea
is familiar from other work such as [3], though we intro-
duce a framework for automatically estimating the struc-
ture. This approach has connections with [10], which finds
phrase decompositions from symbolic music. Secondly,
we introduce a hidden sequence of variables representing
the prosodic interpretation (stress and grouping) itself, by
annotating the role of each note in the larger prosodic con-
text. We believe these representations are naturally posi-
tioned between the musical score and the observable as-
pects of the interpretation. Thus the separate problems
of estimating the representations and generating the actual
performance from the representations require shorter leaps,
and are therefore easier, than directly bridging the chasm
that separates score and performance.

2. THE THEREMIN

Our goal of expressive melody synthesis must, in the end,
produce actual sound. We introduce here an audio rep-
resentation we believe provides a good trade-off between
expressive power and simplicity.

Consider the case of a sine wave in which both fre-
quency, f(t), and amplitude, a(t), are modulated over time:

s(t) = a(t) sin(2π

∫ t

0

f(τ)dτ). (1)

These two time-varying parameters are the ones controlled
in the early electronic instrument known as the theremin.
Continuous control of these parameters can produce a va-
riety of musical effects such as expressive timing, vibrato,
glissando, variety of attack and dynamics. Thus, the theremin
is capable of producing a rich range of expression. One
significant aspect of musical expression the theremin can-
not capture is tone color — as a time varying sine wave,
the timbre of the theremin is always the same. Partly be-
cause of this weakness, we have modified the above rep-
resentation to allow tone color to change as a function of
amplitude:

s(t) =

H∑
h=1

Ah(a(t), f(t)) sin(2πh

∫ t

0

f(τ)dτ) (2)

where the {Ah} are hand-designed functions, monotoni-
cally increasing in the first argument. Thus our sound is
still parametrized by f(t) and a(t), while we increase the
perceived dynamic range.

3. REPRESENTING MUSICAL
INTERPRETATION

There are, no doubt, more aspects of musical interpreta-
tion than can possibly be treated here. Palmer [11] gives a
very nice overview of current thinking on this subject from
the Psychology perspective. Broadly speaking, there are

Figure 1. Amazing Grace (top) and Danny Boy (bot)
showing the note-level labeling of the music using sym-
bols from our alphabet.

at least three important components to musical interpreta-
tion: conveying musical structure, and, in particular, the
way it relates to the notion of phrase; musical prosody —
the placing, avoidance, and foreshadowing of local (note-
level) stress and the associated low-level groupings that
follow; and musical affect such happy, sad, intense, ag-
itated, etc. We will focus only on phrase structure and
prosody here, acknowledging that this is only a piece of
the larger interpretive picture.

The folk-like music we treat here is mostly composed
of simple musical structure, with a high degree of repeti-
tion of rhythm, pitch contour, chord sequence, and other
musical elements. Typically the hierarchical structure of
these melodies is captured by simple tree structures, often
involving binary groupings at various levels of grouping: it
is no accident that 34 out of the 48 melodies in our dataset
have 2n measures for some n. Within this hierarchy, mu-
sical phrases correspond to “levels” of this tree. When a
melody is not captured by a perfectly regular tree struc-
ture, it often corresponds to the concatenation of such reg-
ular trees. For instance, the familiar melody, God Save the
Queen, may be described (2-2-2)+((2-2)-(2-2)) where each
number represents a group of measures, ’+’ denotes con-
catenation and ’-’ denotes grouping. Thus the melody has
3 groups of two measures followed by a two levels of bi-
nary structure for the last eight measures. While there is a
subjective component to the partition into phrases, the first
6 and last 8 measures seem like reasonable choices, per-
haps splitting the last 8 measures into two 4-bar phrases.
In this example phrase boundaries correspond exactly to
measure boundaries, though often this is not the case. Thus
we must also indicate the length of the “pickup” for each
group of measures.

While conveying musical structure is an important part
of expressive synthesis, the main focus of our effort here is
on musical prosody. We introduce now a way of represent-
ing the desired musicality in a manner that makes clear in-
terpretive choices and conveys these unambiguously. Our
representation labels each melody note with a symbol from
a small alphabet,

A = {l−, l×, l+, l→, l←, l∗}

describing the role the note plays in the larger context.
These labels, to some extent, borrow from the familiar vo-
cabulary of symbols musicians use to notate phrasing in
printed music. The symbols {l−, l×, l+} all denote stresses
or points of “arrival.” The variety of stress symbols al-
lows for some distinction among the kinds of arrivals we
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Figure 2. A graph of the frequency function, f(t), be-
tween two notes. Pitches are bent in the direction of the
next pitch and make small glissandi over the transitions.

can represent: l− is the most direct and assertive stress; l×

is the “soft landing” stress in which we relax into repose;
l+ denotes a stress that continues forward in anticipation
of future unfolding, as with some phrases that end in the
dominant chord. Examples of the use of these stresses, as
well as the other symbols are given in Figure 1. The sym-
bols {l→, l∗} are used to represent notes that move for-
ward towards a future goal (stress). Thus these are usually
shorter notes we pass through without significant event. Of
these, l→ is the “garden-variety” passing tone, while l∗ is
reserved for the passing stress, as in a brief dissonance,
or to highlight a recurring beat-level emphasis, still within
the context of forward motion. Finally, the l← symbol de-
notes receding movement as when a note is connected to
the stress that precedes it. This commonly occurs when re-
laxing out of a strong-beat dissonance en route to harmonic
stability. We will write x = x1, . . . , xN with xn ∈ A for
the prosodic labeling of the notes.

These concepts are illustrated with the examples of Amaz-
ing Grace and Danny Boy in Figure 1. Of course, there
may be several reasonable choices in a given musical sce-
nario, however, we also believe that most labellings do not
make interpretive sense and offer evidence of this is Sec-
tion 7. Our entire musical collection is marked in this man-
ner and available at
http://www.music.informatics.indiana.edu/papers/ismir09

4. FROM LABELING TO AUDIO
Ultimately, the prosodic labeling of a melody, using sym-
bols from A, must be translated into the amplitude and fre-
quency functions we use for sound synthesis. We have
devised a deterministic mapping from our prosodically-
labeled score to the actual audio parameter outlined here.

Our synthesis of f(t) and a(t) begins by modifying
the literal interpretation of musical timing expressed in the
score to include ritardandi (slowing down) at the ends of
phrases. While we have not done so here, [3] recommends
larger changes at higher levels of the phrase hierarchy, as
expressed by our structural representation. We further mod-
ify f(t) to include vibrato to long and stressed notes. Fi-
nally, we bend each pitch in towards the following pitch
with a final glissando to encourage a sense of legato. Fig-
ure 2 shows a short piece of this pitch function over the
two consecutive two notes.
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Figure 3. The functions f(t) (green) and a(t) (red) for the
first phrase of Danny Boy. These functions have different
units so their ranges have been scaled to 0-1 to facilitate
comparison.

The heart of the transformation, however, is in the con-
struction of the amplitude function a(t). This function is
created through a series of soft constraints that are placed
on the amplitude defined at various “knot” locations over
time. These constraints are taken from from the prosodically-
annotated score and the structural representation. For in-
stance, we want phrase beginnings, as indicated by the
structural representation, to be low in amplitude; thus we
add a quadratic penalty that encourages this characteristic.
Similarly, we want stressed notes to be high in amplitude
and add similar quadratic penalties to encourage this. In
addition we want forward-moving notes to be increasing
in amplitude, and thus add quadratic terms that encour-
age this relationship between a forward-moving note and
its successor. Similar terms are added for receding notes.
We then compute the values at the knot locations by min-
imizing the quadratic penalty function, and interpolate the
resulting amplitudes at the knot locations. A more detailed
presentation of this process is described in [12]. An ex-
ample of both the a(t) and f(t) functions for a familiar
examples are given in Figure 3.

5. HOW MUCH MUSICALITY DOES THE
REPRESENTATION CAPTURE?

The theremin parameters, f(t), a(t), and hence the audio
signal, s(t), depend entirely on the structural representa-
tion, the prosodic labeling, and the musical score, through
the mapping described in Section 4. We want to under-
stand the degree to which our representation captures mu-
sically important interpretive notions. To this end, we have
constructed a dataset of about 50 simple melodies contain-
ing a combination of genuine folk songs, folk-like songs,
Christmas carols, and examples from popular and art music
of various eras. The melodies were chosen to be familiar,
having simple chords, simple phrase structure, all at mod-
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erate to slow tempo, and appropriate for legato phrasing.
Examples include Danny Boy, Away in a Manger, Loch
Lomond, By the Waters of Babylon, etc. These melodies
were painstakingly hand-annotated with structure and prosody
by the author.

We rendered these melodies into audio according to our
hand-marked annotations and the process of Section 4. For
each of these audio files we provide harmonic context by
superimposing sustained chords, as indicated in the scores.
The entire collection of symbolic melodies, along with ren-
dered audio files, is available at the aforementioned web
site.

We do observe some aspects of musical interpretation
that are not captured by our representation. For example,
the interpretation of Danny Boy clearly requires a climax
at the highest note, as do a number of the musical exam-
ples. We currently do not represent such an event through
our markup. It is possible that we could add a new cate-
gory of stress corresponding to such a highpoint, though
we suspect that the degree of emphasis is continuous, thus
not well captured by a discrete alphabet of symbols.

Another occasional shortcoming is the failure to distin-
guish contrasting material, as in O Come O Come Emanuel.
This melody has a Gregorian chant-like feel and should
mostly be rendered with deliberate calmness. However, the
short outburst corresponding to the word “Rejoice” takes
on a more declarative affect. Our prosodically-oriented
markup simply has no way to represent such a contrast of
styles, though it is hinted at in the structural decomposition
of ((3-3)-(3-3))+(2-2)+3.

There are, perhaps, some other general shortcomings of
the interpretations, though we believe there is quite a bit
that is “right” in them, especially considering the simplic-
ity of our representation of interpretation. However, we
hope readers will make independent judgments.

6. ESTIMATING THE INTERPRETATION

The essential goal of this work is to algorithmically gen-
erate expressive renderings of melody. Having formally
represented our notion of musical interpretation, we can
generate an expressive rendering by estimating this repre-
sentation.

6.1 Estimating Phrase Structure

We estimate the structural decomposition of our melody
by maximizing an objective function defined on the de-
composition using dynamic programming. The approach
begins by labeling each note subsequence containing two
bar lines as a terminal state, and scoring the plausibility of
each possible label for the subsequence (the score function
will be discussed presently). We then proceed inductively
to find the optimal labelings of progressively larger sub-
sequences, ultimately terminating with a labeling for the
entire melody.

Suppose we have have found the possible labelings of
each note subsequence containing m−1 bar lines, and have
computed the best-scoring derivation of each such labeled

subsequence (the labels will be described below). We can
find the optimal score of each label on each contiguous
region containing m bar lines by piecing together various
contiguous subsequences containing less than m bar lines.
We allow three possible ways to do this, as follows

1. We can label a subsequence containing m bar lines
as a terminal state, corresponding to a single group-
ing with no subdivisions. We label such a group of
measures as m — the number of measures compos-
ing the group. The subsequence need not begin or
end at a measure boundary.

2. If the number of measures, m, has a factor, f , in
{2, 3, . . . , 5}, we consider all partitions of the region
into f contiguous regions each containing k = n/f
bar lines. For each such partition, we consider piec-
ing together k identically labeled segments and la-
beling the result as (k − k − . . .− k). For instance,
if we consider a region containing 8 bar lines and
consider composing this region of two identically
labeled contiguous regions, we could group regions
labeled as either 4 or (2-2). Any such production
would result in a region labeled as (4-4), denoting
the binary split. We cannot combine two contiguous
regions labeled as 4 and (2-2) to make a (4-4) region.

3. For the final production phase, which considers the
complete collection of melody notes containing, say,
M bar lines, we allow the previously-described pro-
ductions as well as a concatenation operation. The
concatenation pieces together any pair or triple of
contiguous regions composing the complete melody.
Such concatenations will be denoted as A + B or
A + B + C where A,B,C are any possible label-
ings of the individual regions.

Each of these productions generates a score for the re-
sulting labeling. When we use the terminal state label, we
want the collection of measures to make sense as an iso-
lated unit. Thus we will score such labels to reward rela-
tively long final notes and chord changes at the following
bar line.

When applying our factoring rule, we wish to group to-
gether note sequences that exhibit parallelism. The rhyth-
mic parallelism between two note groups can be measured
by the symmetric difference of the rhythms — the num-
ber of notes that do note “line up” when the bar lines are
aligned. This measure rewards similar rhythmic structures
and encourages groups to have the same pickup length.
When more than two groups are considered, we can com-
pute an average symmetric difference. We have used such
average symmetric differences on rhythm, pitch, and chord
to achieve an overall measure of parallelism. The score of
a particular factor label will then be the sum of the individ-
ual labeled subsequence scores plus the score for overall
parallelism.

The final production type is concatenation. Generally
speaking, we wish to discourage such explanations, so we
give a fixed penalty every time the concatenation operation

558



10th International Society for Music Information Retrieval Conference (ISMIR 2009)

is invoked. Thus the score for a label involving concatena-
tion is the sum of the individual scores, plus a parallelism
score between the concatenated sections, plus the concate-
nation penalty.

With this description in mind, it is simple to find the
overall best scoring labeling. After computing and scoring
all possible labelings of regions containing m bar lines,
we retain only the best scoring parse for each particular
label — this is the essential idea of dynamic programming.
Finally, when we consider the entire collection of notes,
we choose the best scoring of all labelings as our structure
estimate.

At present we have simply hand-chosen the score func-
tion and make no claims for the optimality of this choice.
Both the automatic training and evaluation of this method
are the focus of ongoing work. As an example, our al-
gorithm recognized O Come O Come Emmanuel as ((3-
3)-(3-3))+7 with each segment containing a quarter note
pickup, showing an ability to recognize interesting asym-
metries. Appropriately, most often we recognized simple
binary structures to our melodies.

6.2 Estimating the Prosodic Labeling
Our estimation of the unobserved sequence of prosodic la-
bels, x1, . . . , xN , depends on various observables, y1, . . . , yN ,
where the feature vector yn = y1

n, . . . , yJ
n measures at-

tributes of the musical score at the nth note. The fea-
tures we consider are surface-level attributes of the musical
score. While a great many possibilities were considered,
we ultimately culled the set to the metric strength of the
onset position, as well as the first and second differences
of note length, in seconds, and MIDI pitch.

Our fundamental modeling assumption views the label
sequence, x, as a Markov chain, given the data, y:

p(x|y) = p(x1|y1)

N∏
n=2

p(xn|xn−1, yn, yn−1) (3)

= p(x1|y1)

N∏
n=2

p(xn|xn−1, zn)

where zn = (yn, yn−1). The intuition behind this assump-
tion is the observation (or opinion) that much of phrasing
results from a cyclic alternation between forward moving
notes, {l→, l∗}, stressed notes, {l−, l+, l×}, and optional
receding notes {l←}. Often structural boundaries occur
when one moves from either stressed or receding states to
forward moving states. Thus the notion of state, as in a
Markov chain, seems to be relevant.

We estimate the conditional distributions p(xn|xn−1, zn)
for each choice of xn−1 ∈ A, as well as p(x1|y1), using
our labeled data. We will use the notation

pl(x|z)
def
= p(xn = x|xn−1 = l, zn = z)

for l ∈ A. In training these distributions we split our score
data into |A| groups, Dl = {(xli, zli)}, where Dl is the
collection of all (class label, feature vector) pairs over all
notes that immediately follow a note of class l.

l∗ l→ l← l− l× l+ total
l∗ 135 112 0 18 2 0 267
l→ 62 1683 8 17 0 0 1770
l← 3 210 45 6 2 0 266
l− 49 48 4 103 15 0 219
l× 5 32 2 65 30 0 134
l+ 0 3 0 12 3 0 18
total 254 2088 59 221 52 0 2674

Figure 4. Confusion matrix of errors over the various
classes. The rows represent the true labels while the
columns represent the predicted labels. The block struc-
ture indicated in the table shows the confusion on the
coarser categories of stress, forward movement, and reced-
ing movement

We model the pl(x|z) distributions using the classifica-
tion tree methodology of CART [13]. That is, for each Dl

we begin with a “split,” zj > c separating Dl into two sets:
D0

l = {(xli, zli) : zj
li > c} and D1

l = {(xli, zli) : zj
li ≤

c}. We choose the feature, j, and cutoff, c, to achieve max-
imal “purity” in the sets D0

l and D1
l as measured by the

average entropy over the class labels. We continue to split
the sets D0

l and D1
l , splitting their “offspring,” etc., in a

greedy manner, until the number of examples at a tree node
is less than some minimum value. Our estimate p̂l(x|z) is
then computed by finding the terminal tree node associated
with z and using the empirical label distribution over the
class labels {xli} whose associated {zli} fall to the same
terminal tree node.

Given a piece of music with feature vector z1, . . . , zN ,we
can compute the optimizing labeling

x̂1 . . . , x̂N = arg max
x1,...,xN

p̂(x1|y1)
N∏

n=2

p̂(xn|xn−1, zn)

using dynamic programming.

7. RESULTS

We estimated a labeling for each of the C = 48 pieces in
our corpus by training our model on the remaining C − 1
pieces and finding the most likely labeling, x̂1, . . . , x̂N , as
described above. When computing the most likely labeling
for each melody in our corpus we found a total of 678/2674
errors (25.3%) with detailed results as presented in Figure
4.

The notion of “error” is somewhat ambiguous, however,
since there really is no correct labeling. In particular, the
choices among the forward-moving labels: {l∗, l→}, and
stress labels: {l−, l×, l+} are especially subject to inter-
pretation. If we compute an error rate using these cate-
gories, as indicated in the table, the error rate is reduced to
15.3%.

One should note a mismatch between our evaluation
metric of recognition errors with our estimation strategy.
Using a forward-backward-like algorithm it is possible to
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compute p(xn|y1, . . . , yN ). Thus if we choose

x̄n = arg max
xn∈A

p(xn|y1, . . . , yN ),

then the sequence x̄1, . . . , x̄N minimizes the expected num-
ber of estimation errors

E(errors|y1, . . . , yN ) =
∑

n

p(xn 6= x̄n|y1, . . . , yN )

We have not chosen this latter metric because we want a
sequence that behaves reasonably. It the sequential nature
of the labeling that captures the prosodic interpretation, so
the most likely sequence x̂1, . . . , x̂n seems like a more rea-
sonable choice.

In an effort to measure what we believe to be most im-
portant — the perceived musicality of the performances
— we performed a small user study. We took a subset
of the most well-known melodies of the dataset and cre-
ated audio files from the random, hand, and estimated an-
notations. The estimated annotations were produced using
ground truth for the structure while estimating the prosodic
labelings. We presented all three versions of each melody
to a collection of 23 subjects who were students in our Uni-
versity’s music school, as well as some other comparably
educated listeners. The subjects were presented with ran-
dom orderings of the three versions, with different order-
ings for each user, and asked to respond to the statement:
“The performance sounds musical and expressive” with
the Likert-style ratings 1=strongly disagree, 2=disagree,
3=neutral, 4=agree, 5=strongly agree, as well as to rank
the three performances in terms of musicality (the rank-
ing does not always follow from the Likert ratings). Out
of a total of 244 triples that were evaluated in this way,
the randomly-generated annotation received a mean score
of 2.96 while the hand and estimated annotations received
mean scores of 3.48 and 3.46. The rankings showed no
preference for the hand annotations over the estimated an-
notations (p = .64), while both the hand and estimated an-
notations were clearly preferred to the random annotations
(p = .0002, p = .0003).

Perhaps the most surprising aspect of these results is
the high score of the random labelings — in spite of the
meaningless nature of these labelings, the listeners were,
in aggregate, “neutral” in judging the musicality of the
examples. We believe the reason for this is that musical
prosody, accounts for only a portion of what listeners re-
spond to. All of our examples were rendered with human-
supplied structural representations and the same sound en-
gine of Section 4 which tries to create a sense of smooth-
ness in the delivery with appropriate use of vibrato and
timbral variation. We imagine that the listeners were partly
swayed by these aspects, even when the use of prosody
was not satisfactory. The results also show that our estima-
tion produced annotations that were, essentially, as good
as the hand-labeled annotations. This demonstrates a suc-
cess of our research. The computer-generated interpreta-
tions clearly demonstrate some musicality with an average
listener rating of 3.46 — halfway between “neutral” and
“agree.” However, there is considerable room for improve-
ment.

The melodies were also rendered using structural repre-
sentations estimated as in Section 6.2, thus leaving the en-
tire musical interpretation to the computer. The audio files
documenting this experiment are available on the afore-
mentioned web site.
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