
10th International Society for Music Information Retrieval Conference (ISMIR 2009)

BROWSING MUSIC RECOMMENDATION NETWORKS

Klaus Seyerlehner
Dept. of Computational Perception

Johannes Kepler University
Linz, Austria

klaus.seyerlehner@jku.at

Peter Knees
Dept. of Computational Perception

Johannes Kepler University
Linz, Austria

peter.knees@jku.at

Dominik Schnitzer
Austrian Research Institute for AI

Vienna, Austria
dominik.schnitzer@jku.at

Gerhard Widmer
Austrian Research Institute for AI

Vienna, Austria
gerhard.widmer@jku.at

ABSTRACT

Many music portals offer the possibility to explore mu-
sic collections via browsing automatically generated mu-
sic recommendations. In this paper we argue that such
music recommender systems can be transformed into an
equivalent recommendation graph. We then analyze the
recommendation graph of a real-world content-based mu-
sic recommender systems to find out if users can really
explore the underlying song database by following those
recommendations. We find that some songs are not rec-
ommended at all and are consequently not reachable via
browsing. We then take a first attempt to modify a recom-
mendation network in such a way that the resulting net-
work is better suited to explore the respective music space.

1. INTRODUCTION

Now that millions of songs are available for purchase and
download on modern music platforms, developing concepts
that help customers to navigate and explore the underly-
ing song database becomes more and more important. A
straight forward solution that is used in many commercial
settings to assist users in finding songs in a database is to
simply present lists of recommendations. Users are then
able to explore a collection by moving from recommenda-
tion to recommendation. Exploring a music collection via
such a sequence of recommendations is called browsing.
We believe that browsing will be a key feature of modern
music portals and consequently it is important to view rec-
ommendation not just in terms of individual recommen-
dation queries only, but also as a continuous process. To
analyze recommender systems with respect to their ability
to support users to browse throughout a music collection,
we can view a music recommender as a recommendation

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.

network. Recent research work on analyzing music rec-
ommendation networks [1, 2] indicates that many songs in
such a network stay hidden in the so-called Long Tail [3,4].
One reason why songs stay hidden in the Long Tail is that
it is hard to navigate through the network to reach those
unknown songs. Thus, it seems to be an essential property
of such a recommendation network that each song can be
reached via browsing the recommendations. The goal of
this paper is to analyze music recommendation networks
with respect to their browsability.

The rest of this paper is organized as follows: In section
2 we start with formally defining the general recommen-
dation scenario. In section 3 we show that under some
restrictions any recommender system can be transformed
into an equivalent recommendation graph. We then define
properties for a recommendation graph that make such a
graph useful for browsing the underlying music database
and introduce the notion of a browsing graph. In section
4 an analysis of a recommendation graph of a real world
content-based music recommender system illustrates the
limitations of a simple recommender system with respect
to the reachability of database items. We then propose in
section 4.2 an algorithm which effectively modifies a rec-
ommendation graph to overcome these reachability limita-
tions. Finally, we give an outlook on the application of the
proposed method and some future work.

2. RECOMMENDATION SCENARIO

Although many different music recommender systems have
been proposed so far, the fundamental principle is basically
the same. Independent of the actual recommendation ap-
proach we can give a formal model of a recommendation
scenario for item-based recommendation:

Given a set of database items U of size N and a specific
item o ∈ U that a user is currently focusing on, a recom-
mendation is a subset of items R ⊂ U related to o, where
the size of the subset R is far smaller than the total number
of items in the database. This very simple recommendation
scenario can be extended by generating a recommendation
not only based on the current item o but additionally spec-

129



Poster Session 1

ifying a user profile p ∈ P , where P is a set of all user
profiles stored in the recommender system. We call a tu-
ple q = (o, p) a recommendation query and the item set
R(q) returned by the recommender system the result set or
recommendation.

Actual recommender systems then differ in the way the
recommendations are generated in this scenario. With re-
spect to music recommender systems, there seem to exist
five general recommendation approaches: collaborative fil-
tering approaches, content-based approaches, web-mining
based approaches, expert-based approaches and hybrid ap-
proaches.

Our investigations in the next sections are in general
independent of the recommendation approach. The only
requirement is that the recommender system under inves-
tigation returns, for any query q(o, p), an ordered set of
recommended items of a given length k such that the rec-
ommended items are ordered according to a measure of
relatedness.

3. RECOMMENDATION GRAPHS

An intuitive way of exploring a music catalog is to pick
an arbitrary item out of the database and than navigate
throughout the database moving from recommendation to
recommendation. One important requirement of such a
browsing system is reachability. Reachability essentially
ensures that a user will be able to access all songs in the
collection by means of exploration and will not be limited
to a small subset by the recommender system. To be able
to show that reachability is ensured for a specific recom-
mendation algorithm, we have to establish a formal model
of the browsing process.

Based on our definition of a recommendation scenario
(see section 2), browsing can be seen as an extension to
recommendation from a single query to a consecutive se-
quence of queries s = (q1, q,2 , ..., qN ). Two consecutive
queries qi = (oi, p) and qi+1 = (oi+1, p) within such
a browsing sequence are related by the fact that the item
oi+1 of the next recommendation query qi+1 is an element
of the result set of the previous recommendation query qi.
Consequently, a sequence s of recommendation queries of
length N is a valid browsing sequence in the case that the
following property is fulfilled:

∀i < N : oi+1 ∈ R(qi) (1)

To guarantee this essential reachability property for a
recommender system we have to show that starting from a
arbitrary but fixed database item, all other database items
can be reached by a finite sequence of recommendation
queries. Formally, reachability starting from an arbitrary
but fixed item o1 holds if:

∀o ∈ U : ∃i ∈ N : ∀j < i : (2)

oj+1 ∈ R(qj) ∧ qj+1 = (oj+1, p) ∧ o ∈ R(qi)

Before we can start drawing any conclusions about reach-
ability, we have to make some additional assumptions about

the recommender system. The reason is that for dynamic
recommenders, e.g., based on collaborative filtering, where
the recommendations may change as a result of system use,
it is impossible to prove reachability, since we cannot make
any assumption about future recommendations. Therefore
we have to assume a static recommender system where the
recommendation will not change over time. It is impor-
tant to note that this is not in principle a loss in generality;
it just implies that if there are any changes in the recom-
mender system then we also have to prove reachability for
this new recommendation state.

Furthermore we constrain our analysis to systems where
the recommendation result is independent of the user pro-
file. This implies that all users get the same recommen-
dations for one and the same query item. Once more this
is not in principle a loss in generality as we could handle
such systems by proving reachability for each user sepa-
rately. In practice, however, analyzing recommender sys-
tems that generate personalized recommendations seems to
be impossible due to the potential enormous computational
costs.

Given these restrictions, we can now transform every
possible recommender system into a recommendation net-
work or recommendation graph. A recommendation graph
is a directed graph G = (V,E), where each vertex in the
graph corresponds to a database item. For each item o in
the database the corresponding vertex in the graph has a
directed edge to all the items in the result set R(q) of the
recommendation query q = (o, p). (Note that based on
our assumptions R(q) does not depend on p, an optionally
given user profile.) To prove reachability for such a recom-
mendation graph we can for instance apply the depth first
search algorithm for each vertex in the graph separately.

While this is not a very practical or fast method to prove
reachability, in most cases it is quite trivial to disprove
reachability either by showing that the recommendation
graph is not connected, or by identifying a single source.
A source is a vertex v which has no incoming edges, i.e.,
has an indegree of zero (deg−(v) = 0). This implies that
there is a song in the database that does not occur in the
result set of any possible recommendation query and is
consequently not reachable at all. Sources are especially
problematic with respect to browsing: not only are they
not reachable if one starts from some specific song in the
database, but they are not reachable from any other song
in the database. In section 4 we show, based on empirical
analysis of a real world music recommender system, that
in contrast to what one would expect it is rather likely that
there are many sources in a simple recommendation graph.
Identifying sources in a graph is a fast operation and can
be done in O(n).

Proving and disproving reachability is of course an im-
portant analysis, however in the likely case that we are able
to disprove reachability, what can we do about it? How
can we find a recommendation algorithm that guarantees
reachability? To put it another way, can we modify a rec-
ommendation graph in such a way that the recommenda-
tion graph guarantees reachability? In section 4 we will

130



10th International Society for Music Information Retrieval Conference (ISMIR 2009)

show that it is quite likely that a recommendation graph
does not fulfill the reachability property. We then propose
an algorithm that transforms a recommendation graph into
a browsing graph, a recommendation graph that besides
reachability has some other properties that we are going to
introduce in the next section.

3.1 Further Requirements and Constraints

Up to now we have only considered reachability as an im-
portant property of a recommendation graph. But we can
derive additional constraints for the recommendation graph
by analyzing user requirements of browsing systems.

The first requirement that jumps to the eye is that the
result set should be relatively small — first of all, because
the display space for recommendations is in general lim-
ited on output devices, and secondly, because too large a
result set would confuse the user and make for a very un-
focused search. Thus it is a natural constraint that the size
of the result set should not exceed a maximum number of
recommendations kmax. For the corresponding recommen-
dation graph this implies that the outdegree of all vertices
is less or equal to kmax. We call this property maximum
outdegree property.

∀v ∈ V : deg+(v) ≤ kmax (3)

The second constraint is that if item B is a recommenda-
tion for item A then item A should also be a recommenda-
tion of item B. This corresponds not only to humans’ intu-
ition that similarity relations are symmetric, but also allows
to easily go back each recommendation step. The symme-
try property as defined in (4) implies that the browsing
graph is an undirected graph.

∀e1 = (v1, u1) ∈ E :
∃e2 = (v2, u2) ∈ E : (4)

v1 = u2 ∧ u1 = v2

Finally, we extend our notion of reachability. Reachability
just ensures that starting from an arbitrary vertex there is at
least a single path to each other vertex. This could make it
rather difficult to find this path. Therefore we require each
vertex to have a minimum number of incoming edges. For
the browsing graph this implies that each vertex has a min-
imum indegree kmin and means that each item is reachable
by recommendations from at least kmin other items. This
property is called minimum indegree property.

∀v ∈ V : deg−(v) ≥ kmin (5)

As a result from this requirement analysis we claim that a
recommendation graph is better suited for browsing a mu-
sic archive if these four properties are ensured. We then
call such a graph no longer a recommendation graph, but a
browsing graph instead.

In the next section we illustrate the limitations of a sim-
ple recommendation graph based on a real world content-
based music recommender system and show that in most
cases such a recommendation graph is not adequate for
browsing. We then introduce a heuristic algorithm that can
transform a recommendation graph into a browsing graph.

4. BROWSING GRAPHS

4.1 An Empirical Study

In this section we will show that properties like reachabil-
ity are essential and cannot be neglected when designing
a recommender or browsing system. To do so we analyze
a real world content-based music recommender system at-
tached to the music portal. The FM4 Soundpark 1 is an
internet platform of the Austrian public radio station FM4.
This internet platform allows artists to present their music
free of any cost in the WWW. All interested parties can
download this music free of any charge. At the moment
this music collection contains about 10000 songs and is
steadily growing. In our experiments we were allowed to
use a subset of 7665 songs out of the whole collection.

The recommender system attached to the FM4 Sound-
park music portal is based on a standard similarity measure
for music audio files. Each song is modeled as a distribu-
tion of local spectral features, namely Mel Frequency Cep-
strum Coefficients (MFCCs). MFCCs are a compact rep-
resentation of the spectral envelope of a short audio frame
and are one of the most widespread features used in the
Music Information Retrieval (MIR) community. A sin-
gle multivariate Gaussian distribution is used to model the
distribution of MFCCs of a song. Recommendations can
then be generated by comparing these distributions. This is
commonly done by computing the Kullback-Leibler (KL)
divergence [5] or relative entropy between the distributions
of two songs. For more details on the feature extraction
process and the generation of music recommendations we
refer to [6–8]. Using the MIR system of the FM4 Sound-
park we were able to generate lists of recommended songs
of a given length k, ordered according to the similarity to
the query song, exactly as required by our general scenario
(see section 2).

Assuming a fixed sized result set of k recommenda-
tions for each query, we systematically created all recom-
mendation graphs for k = 1 . . . 100, where we denote
k as the degree of the recommendation graph. For each
of these graphs we computed the indegree for all vertices
and counted the number of sources in each graph. Figure
1 shows that for small result sets the number of sources
is extremely high. For example, in the recommendation
graph of degree 5 there are 2661 sources, which implies
that 34.72% of all the songs in the music collection are not
reachable at all within this graph. By increasing the result
set size the number of sources decreases, but even for a
quite large result set of size 20 we still have approximately
1320 sources. Consequently still 17.22% of the songs in
the collection cannot be reached. From figure 2 we can
see how the number of sources scales with the collection
size. To simulate different collection sizes songs were ran-
domly removed from the collection. Figure 2 illustrates
that the problem gets worse for increasing collection sizes.
In fact the analysis of the recommendation graph that cor-
responds to the online version of the FM4 Soundpark —
there are only three recommendations per song — revealed

1 http://fm4.orf.at/soundpark/main

131



Poster Session 1

Figure 1. For small result sets, the number of sources is
extremely large and decreases with an increasing number
of recommendations per query, whereas the maximum in-
degree over all vertices in each graph increases. For a
result set size of 100, there is one song that appears in the
recommendation list of 2628 other songs, or in 34.29% of
all recommendation lists.

that only 56,79% of all songs are reachable by recommen-
dations, the remaining 43,21% of the songs are sources and
are never recommended.

In addition to the number of sources, we also computed
the maximum indegree over all vertices in each graph, visi-
ble in figure 1. Obviously, while some songs are not reach-
able at all, some others are directly reachable from very
many songs. However it is of course quite implausible
that a single song is similar to several hundred other songs.
Songs that have a very high indegree, but do not share any
perceptual similarity with the referring songs are called
hub-songs according to [9]. In our case the hub problem
seems to be related to the content-based audio similarity
measure itself. Interestingly, hubs naturally appear in so-
cial networks (including collaboration networks) as well
[10]. Regardless of the reasons for hubs and sources, both
essentially reduce the usability of music recommender sys-
tems to explore the music spaces. In the following we pro-
pose a heuristic algorithm that transforms a recommenda-
tion graph into a browsing graph that fulfills the properties
introduced in section 3.

4.2 Constructing a Browsing Graph

The main idea behind our approach is to transform a rec-
ommendation graph into a browsing graph, simply by re-
placing all directed edges by undirected edges and then it-
eratively (and heuristically) removing edges from the re-
sulting graph such that the maximum outdegree and the
minimum indegree property are satisfied for all vertices.
The symmetry property is automatically ensured because
the graph is undirected. Furthermore, reachability is guar-

Figure 2. The number of sources in a recommendation
graph scales with the number of items in a database. Fur-
thermore the number of sources depends on the number
of recommendations for each query. This is illustrated for
fixed result set sizes of k = 5, 10, 15, 20, 25, 30.

anteed if the resulting graph is connected.
The proposed algorithm has three important parameters.

There is the minimum indegree kmin and the maximum
outdegree kmax, which directly result from the required
properties. It is easy to see that in combination with the
symmetry property this implies that each vertex in the fi-
nal browsing graph will have to have an edge degree be-
tween kmin and kmax. The proposed algorithm starts from
the directed version of the recommendation graph. One
could of course start the algorithm from a recommenda-
tion graph with outdegree kmax, but since we want to give
our algorithm additional flexibility during the process of
removing edges, it is required that the original recommen-
dation graph has an outdegree of at least kstart for all ver-
tices. This simply means that for each item we can gener-
ate at least kstart recommendations and is in line with the
requirement on recommender systems in section 2. The
three parameters are related to each other as stated in (6).

kmin < kmax < kstart (6)

The only thing left to do is to remove edges till each ver-
tex has a degree in between kmin and kmax. This should
be done in such a way that each vertex tries to remove its
‘weakest’ links (i.e., those with the lowest degree of relat-
edness), since the recommendations should be as good as
possible. This can be done as follows:

1. Put all vertices into a priority queue q, where all
vertices are sorted according to their degree deg(v);
break ties among same-degree nodes randomly;

2. Pop the vertex with the highest degree from the queue.

3. If this vertex already has a degree smaller than or

132



10th International Society for Music Information Retrieval Conference (ISMIR 2009)

equal to kmax, then all vertices in the queue have a
degree smaller or equal to kmax. We are done.

4. As the current vertex has too many edges, remove an
edge that connects this vertex to another vertex hav-
ing a degree greater than kmin. Choose the edge to
remove according to the indegree of the neighboring
vertices. Remove the edge connecting to the ver-
tex with the highest indegree and if there are several
vertices of the same indegree remove the vertex with
the weakest (lowest similarity) edge. If this vertex
is not connected to any other vertex having a degree
greater than kmin, then we are not able to ensure the
maximum indegree property for this node. Stop in
this case.

5. Since we have removed an edge, the indegrees of the
two vertices connected by the edge have changed.
Remove them from the queue and reinsert them such
that the queue is up to date.

6. Go back to step 2.

Of course it is true that this algorithm might find a so-
lution where individual vertices have an edge degree higher
than kmax, violating the maximum outdegree property. This
can be due to the fact that for given constraints there sim-
ply does not exist any solution. In such a case weakening
the constraint till enough solutions to the problem exist can
help. If there are enough solutions, simply rerunning the
algorithm might help. Vertices of the same edge count are
inserted into the priority queue in random order. There-
fore the algorithm might find other solutions. However our
experiments indicate that it is quite easy to find a valid
solution. Furthermore, the proposed algorithm does not
guarantee that the resulting graph is connected, but in all
our conducted experiments the resulting browsing graph
turned out to be connected.

4.2.1 Time Complexity

One major advantage of this algorithm is that it is of time
complexity O(n log(n)). At most n(kstart − kmin) edges
have to be removed. Therefore we have to perform a maxi-
mum of 3n(kstart− kmin) removal or insertion operations
on the sorted priority queue. Sorting and removing ele-
ments from a priority queue can be done in O(log(n)),
e.g., by using a balanced red-black tree. Therefore remov-
ing all the additional edges from the graph can be done in
O(n log(n)). The initial insertion operation of all elements
in the priority queue is also of complexity O(n log(n)).
Thus, the overall complexity of this algorithm is O(n log(n)).

4.2.2 Validation of the Transformation Algorithm

To validate the proposed algorithm we analyzed the re-
sult after the transformation of the FM4 Soundpark into
a browsing graph. The parameters used to transform the
graph were kmin = 4, kmax = 7 and kstart = 9. As we
do not have yet statistics of the usage before and after the
transformation, we follow the standard procedure in MIR

research and evaluate transformation algorithm in an indi-
rect way, via a music genre analysis. For all query songs
q we count the number of songs in the result set R(q) that
have the same genre as the query song and compute the
overall percentage relative to the number of recommended
songs. That way we measure the accuracy of the recom-
mendations independent of the number of the recommen-
dations. The accuracy of the recommendations using result
sets of length k = 5 was 35.39%, for k = 6 was 34.86%
and for k = 7 was 34.32%. After the transformation us-
ing the above parameters the accuracy was 35.63% with
an average degree of 5.918 per vertex. This preliminary
result indicates that there is only a marginal change in rec-
ommendation quality, however a more detailed empirical
study will be done in future. Furthermore to evaluate how

Figure 3. The average percentage of songs that can be
reached by browsing sequences of different length. Before
the transformation (for k = 5, 6, 7 ) and after the tranfor-
mation.

the reachability of songs has changed we investigated how
many songs can be reached in average by a recommenda-
tion sequence of length l. To do so we computed for each
song the number of songs that can be reached by such a se-
quence. This can be done by traversing the recommenda-
tion graph using the breadth-first search (BFS) algorithm
up to a maximum depth of l. We then take the average over
all songs to get a quality indicator for the whole network.
As one can see from figure 3 after the transformation more
songs can be reached when browsing the resulting graph
than before.

5. APPLICATION AND FUTURE WORK

Based on the graph-theoretic studies performed on the FM4
Soundpark Recommender, we are now investigating ways
of turning the Soundpark into a Browsing Graph. Given
the purpose of the system – to make new music artists
known to a wide public – reachability of as many artists
(or works) as possible would be a prime feature. This is
not quite straightforward and will involve some interesting
research questions. Several aspects have to be addressed:

Recommendation quality: Clearly, the quality of the rec-
ommendations changes as a recommendation graph

133



Poster Session 1

(which is based on content-based similarity relations)
is transformed into a browsing graph (which sacri-
fices certain recommendation links in order to sat-
isfy the browsing constraints). Whether or not that
unduly degrades the quality of the recommendation
service can only be studied empirically. We will ad-
dress this issue by means of a large-scale user study,
which is yet to be designed (see below).

Incremental updates: The FM4 music database grows on
a daily basis. Every day, dozens of new songs, mostly
by new artists, are added to the database and inte-
grated into the recommender system in nightly batch
update sessions. Thus, the browsing graph transfor-
mation will also have to be run at regular intervals.
As an alternative, we will look into the possibility of
incremental update algorithms for browsing graphs.

Time-varying recommendations: A specific aspect of the
growing database is that the system’s recommenda-
tions may change from day to day. That is, if the user
selects the same seed song on two consecutive days,
she may get different recommendations of songs that
are supposedly ‘similar’. This may be a problem in
certain applications, but perhaps not in the case of
the Soundpark. Soundpark users have been taught
to regard the recommendation service as a means
to explore the Soundpark and find new things that
they would not otherwise find. From the user feed-
back we currently have, we can conclude that many
of the users are quite open-minded about occasional
‘strange’ recommendations, regarding them as ‘in-
teresting’ or ‘funny’ ideas by the computer, rather
than annoying mistakes. Thus, they might find time-
varying recommendations (if they ever notice them)
to be enriching rather than irritating.

Modifications to the Soundpark recommender system
will be accompanied with a large scale user study. We have
access to two kinds of user feedback: the browsing ses-
sions themselves (click data) as logged by the Soundpark
server, and an on-line user forum, where users discuss their
impressions of the system (among other things). Questions
to be studied include, e.g., whether improved reachability
conditions really increase the number of artists that are lis-
tened to by users; whether and how one can quantify dif-
ferences in recommendation quality between recommen-
dation and browsing graphs; and general aspects of user
browsing behaviour that may help in designing better rec-
ommenders in the future (for instance: how long is a typ-
ical browsing sequence? do users follow more than one
recommendation in a given recommendation list? etc.).

In this way, the FM4 Soundpark may then become one
of the first real-world music recommendation system that
is (a) purely content-based, that is, based on musical simi-
larity as estimated by the system itself, and (b) specifically
designed to maximize the percentage of music items that
can be found via similarity-based browsing.

6. CONCLUSIONS

In this paper we have shown that designing music recom-
mender systems is not as straight forward as it seems. Es-
pecially reachability is an important property if a music
recommendation system should also allow users to explore
a music archive via browsing. A bad system design might
have the consequence that a portion of all songs in the
database cannot be discovered as they are not accessible at
all. To overcome these limitations we took a first attempt to
modify the graph representation of a recommender system
in such a way that browsing the resulting recommendation
network is more convenient. We believe that improving
the accessibility of songs in a music archives can signifi-
cantly increase the usability of music services and might
even help to alleviate the long tail phenomenon by ensur-
ing the accessibility of ’niche’ products.

7. ACKNOWLEDGEMENTS

This research was supported by the Austrian Research Fund
(FWF) under grant L511-N15, and by the Austrian Re-
search Promotion Agency (FFG) - project number 815474.

8. REFERENCES

[1] O. Celma and P. Cano. From hits to niches? or how
popular artists can bias music recommendation and
discovery. In 2nd Workshop on Large-Scale Recom-
mender Systems (ACM KDD), Las Vegas, USA, 2008.

[2] O. Celma and P. Herrera. A new approach to evaluating
novel recommendations. In 2008 ACM Conference on
Recommender Systems, Lausanne, Switzerland, 2008.

[3] C. Anderson. The Long Tail: Why the Future of Busi-
ness Is Selling Less of More. Hyperion, July 2006.

[4] E. Brynjolfsson, Y. J. Hu, and M.l D. Smith. From
niches to riches: Anatomy of the long tail. Sloan Man-
agement Review, 47(4), 2006.

[5] S. Kullback and R. A. Leibler. On information and suf-
ficiency. Annals of Mathematical Statistics, 1951.

[6] M. Levy and M. Sandler. Lightweight measures for
timbral similarity of musical audio. In Proc. of the 1st
ACM Workshop on Audio and Music Computing Mul-
timedia, Santa Barbara, USA, 2006.

[7] M. Mandel and D. Ellis. Song-level features and svms
for music classification. In Proc. of the 6th Int. Conf.
on Music Information Retrieval, September 2005.

[8] A. Flexer, D. Schnitzer, M. Gasser, and G. Widmer.
Playlist generation using start and end songs. In Proc.
Int. Sym. on Music Information Retrieval, 2008.

[9] J.-J. Aucouturier and F. Pachet. A scale-free distribu-
tion of false positives for a large class of audio similar-
ity measures. Pattern Recogn., 41(1):272–284, 2008.

[10] A.-L. Barabsi R. Albert. Statistical mechanics of com-
plex networks. Review of Modern Physics, 2002.

134


