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ABSTRACT

A performance of a piece of music heavily depends on

the musician’s or conductor’s individual vision and per-

sonal interpretation of the given musical score. As ba-

sis for the analysis of artistic idiosyncrasies, one requires

accurate annotations that reveal the exact timing and in-

tensity of the various note events occurring in the perfor-

mances. In the case of audio recordings, this annotation is

often done manually, which is prohibitive in view of large

music collections. In this paper, we present a fully auto-

matic approach for extracting temporal information from

a music recording using score-audio synchronization tech-

niques. This information is given in the form of a tempo

curve that reveals the relative tempo difference between an

actual performance and some reference representation of

the underlying musical piece. As shown by our experi-

ments on harmony-based Western music, our approach al-

lows for capturing the overall tempo flow and for certain

classes of music even finer expressive tempo nuances.

1. INTRODUCTION

Musicians give a piece of music their personal touch by

continuously varying tempo, dynamics, and articulation.

Instead of playing mechanically they speed up at some

places and slow down at others in order to shape a piece

of music. Similarly, they continuously change the sound

intensity and stress certain notes. The automated analysis

of different interpretations, also referred to as performance

analysis, has become an active research field [1–4]. Here,

one goal is to find commonalities between different inter-

pretations, which allow for the derivation of general perfor-

mance rules. A kind of orthogonal goal is to capture what

is characteristic for the style of a particular musician. Be-

fore one can analyze a specific performance, one requires

the information about when and how the notes of the un-

derlying piece of music are actually played. Therefore, as

the first step of performance analysis, one has to annotate

the performance by means of suitable attributes that make
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explicit the exact timing and intensity of the various note

events. The extraction of such performance attributes con-

stitutes a challenging problem, in particular for the case of

audio recordings.

Many researchers manually annotate the audio mate-

rial by marking salient data points in the audio stream.

Using novel music analysis interfaces such as the Sonic

Visualiser [5], experienced annotators can locate note on-

sets very accurately even in complex audio material [2, 3].

However, being very labor-intensive, such a manual pro-

cess is prohibitive in view of large audio collections. An-

other way to generate accurate annotations is to use a

computer-monitored player piano. Equipped with optical

sensors and electromechanical devices, such pianos allow

for recording the key movements along with the acoustic

audio data, from which one directly obtains the desired

note onset information [3, 4]. The advantage of this ap-

proach is that it produces precise annotations, where the

symbolic note onsets perfectly align with the physical on-

set times. The obvious disadvantage is that special-purpose

hardware is needed during the recording of the piece.

In particular, conventional audio material taken from CD

recordings cannot be annotated in this way. Therefore,

the most preferable method is to automatically extract the

necessary performance aspects directly from a given audio

recording. Here, automated approaches such as beat track-

ing [6, 8] and onset detection [9] are used to estimate the

precise timings of note events within the recording. Even

though great research efforts have been directed towards

such tasks, the results are still unsatisfactory, in particu-

lar for music with weak onsets and strongly varying beat

patterns. In practice, semi-automatic approaches are often

used, where one first roughly computes beat timings using

beat tracking software, which are then adjusted manually

to yield precise beat onsets.

In this paper, we present a novel approach towards

extracting temporal performance attributes from music

recordings in a fully automated fashion. We exploit the

fact that for many pieces there exists a kind of “neutral”

representation in the form of a musical score (or MIDI file)

that explicitly provides the musical onset and pitch infor-

mation of all occurring note events. Using music synchro-

nization techniques, we temporally align these note events

with their corresponding physical occurrences in the mu-

sic recording. As our main contribution, we describe vari-

ous algorithms for deriving tempo curves from these align-
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Figure 1. First measure of Beethoven’s Pathétique Sonata
Op. 13. The MIDI-audio alignment is indicated by the arrows.

ments which reveal the relative tempo differences between

the actual performance and the neutral reference represen-

tation. We have evaluated the quality of the automatically

extracted tempo curves on harmony-based Western music

of various genres. Besides a manual inspection of a rep-

resentative selection of real music performances, we have

also conducted a quantitative evaluation on synthetic audio

material generated from randomly warped MIDI files. Our

experiments indicate that our automated methods yield ac-

curate estimations of the overall tempo flow and, for cer-

tain classes of music such as piano music, of even finer

expressive tempo nuances.

The remainder of this paper is organized as follows.

After reviewing some basics on music synchronization

(Sect. 2), we introduce various algorithms for extracting

tempo curves from expressive music recordings (Sect. 3).

Our experiments are described in Sect. 4, and prospects on

future work are sketched in Sect. 5. Further related work

is discussed in the respective sections.

2. MUSIC SYNCHRONIZATION

The largest part of Western music is based on the equal-

tempered scale and can be represented in the form of musi-

cal scores, which contain high-level note information such

as onset time, pitch, and duration. In the following, we as-

sume that a score is given in the form of a “neutral” MIDI

file, where the notes are played with a constant tempo in

a purely mechanical way. We refer to this MIDI file as

reference representation of the underlying piece of mu-

sic. On the other hand, we assume that the performance

to be analyzed is given in the form of an audio recording.

In a first step, we use conventional music synchronization

techniques to temporally align the note events with their

corresponding physical occurrences in the audio record-

ing [10, 11]. The synchronization result can be regarded

as an automated annotation of the audio recording with the

note events given by the MIDI file, see Fig. 1.

Most synchronization algorithms rely on some variant

of dynamic time warping (DTW) and can be summarized

as follows. First, the MIDI file and the audio recording
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Figure 2. Left: Cost matrix and cost-minimizing alignment
path for the Beethoven example shown in Fig. 1. The reference
representation (MIDI) corresponds to the horizontal and the per-
formance (audio) to the vertical axis. Right: Original (black)
and onset-rectified alignment path (red). The MIDI note onset
positions are indicated by the blue vertical lines.

to be aligned are converted into feature sequences, say

X := (x1, x2, . . . , xN ) and Y := (y1, y2, . . . , yM ), re-

spectively. Then, an N × M cost matrix C is built up

by evaluating a local cost measure c for each pair of fea-

tures, i. e., C((n,m)) = c(xn, ym) for n ∈ [1 : N ] :=
{1, 2, . . . , N} and m ∈ [1 : M ]. Each tuple p = (n,m)
is called a cell of the matrix. A (global) alignment path

is a sequence (p1, . . . , pL) of length L with pℓ ∈ [1 :
N ] × [1 : M ] for ℓ ∈ [1 : L] satisfying p1 = (1, 1),
pL = (N,M) and pℓ+1 − pℓ ∈ Σ for ℓ ∈ [1 : L − 1].
Here, Σ = {(1, 0), (0, 1), (1, 1)} denotes the set of admis-

sible step sizes. The cost of a path (p1, . . . , pL) is defined

as
∑L

ℓ=1 C(pℓ). A cost-minimizing alignment path, which

constitutes the final synchronization result, can be com-

puted via dynamic programming from C, see Fig. 2. For

a detailed account on DTW and music synchronization we

refer to [11].

Based on this general strategy, we employ a synchro-

nization algorithm based on high-resolution audio features

as described in [12]. This approach, which combines the

high temporal accuracy of onset features with the robust-

ness of chroma features, generally yields robust music

alignments of high temporal accuracy. In the following,

we use a feature resolution of 50 Hz with each feature vec-

tor corresponding to 20 milliseconds of MIDI or audio. For

details, we refer to [12].

3. COMPUTATION OF TEMPO CURVES

The feeling of pulse and rhythm is one of the central com-

ponents of music and closely relates to what one gener-

ally refers to as tempo. In order to define some notion of

tempo, one requires a proper reference to measure against.

For example, Western music is often structured in terms of

measures and beats, which allows for organizing and sec-

tioning musical events over time. Based on a fixed time

signature, one can then define the tempo as the number of

beats per minute (BPM). Obviously, this definition requires

a regular and steady musical beat or pulse over a certain

period in time. Also, the very process of measurement is

not as well-defined as one may think. Which musical enti-

ties (e. g., note onsets) characterize a pulse? How precisely

can these entities be measured before getting drowned in

noise? How many pulses or beats are needed to obtain a
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meaningful tempo estimation? With these questions, we

want to indicate that the notion of tempo is far from be-

ing well-defined. Different representations of timing and

tempo are presented in [7].

In this paper, we assume that we have a reference repre-

sentation of a piece of music in the form of a MIDI file gen-

erated from a score using a fixed global tempo (measured

in BPM). Assuming that the time signature of the piece is

known, one can recover measure and beat positions from

MIDI time positions. Given a specific performance in the

form of an audio recording, we first compute a MIDI-audio

alignment path as described in Sect. 2. From this path we

derive a tempo curve that describes for each time position

within the MIDI reference (given in seconds or measures)

the tempo of the performance (given as a multiplicative

factor of the reference tempo or in BPM). Fig. 4 and Fig. 5

show some tempo curves for various performances.

Intuitively, the value of the tempo curve at a certain ref-

erence position corresponds to the slope of the alignment

path at that position. However, due to discretization and

alignment errors, one needs numerically robust procedures

to extract the tempo information by using average values

over suitable time windows. In the following, we describe

three different approaches for computing tempo curves us-

ing a fixed window size (Sect. 3.1), an adaptive window

size (Sect. 3.2), and a combined approach (Sect. 3.3).

3.1 Fixed Window Size

Recall from Sect. 2 that the alignment path p =
(p1, . . . , pL) between the MIDI reference and the perfor-

mance is computed on the basis of the feature sequences

X = (x1, . . . , xN ) and Y = (y1, . . . , yM ). Note that one

can recover beat and measure positions from the indices

n ∈ [1 : N ] of the reference feature sequence, since the

MIDI representation has constant tempo and the feature

rate is assumed to be constant.

To compute the tempo of the performance at a specific

reference position n ∈ [1 : N ], we basically proceed as

follows. First, we choose a neighborhood of n given by

indices n1 and n2 with n1 ≤ n ≤ n2. Using the alignment

path, we compute the indices m1 and m2 aligned with n1

and n2, respectively. Then, the tempo at n is defined as

quotient n2−n1+1
m2−m1+1 . The main parameter to be chosen in

this procedure is the size of the neighborhood. Further-

more, there are some technical details to be dealt with.

Firstly, the boundary cases at the beginning and end of the

reference need special care. To avoid boundary problems,

we extend the alignment path p to the left and right by set-

ting pℓ := (ℓ, ℓ) for ℓ < 1 and pℓ := (N+ℓ−L,M+ℓ−L)
for ℓ > L. Secondly, the indices m1 and m2 are in general

not uniquely determined. Generally, an alignment path p
may assign more than one index m ∈ [1 : M ] to a given

index n ∈ [1 : N ]. To enforce uniqueness, we chose the

minimal index over all possible indices. More precisely,

we define a function ϕp : Z → [1 : M ] by setting

ϕp(n) := min{m ∈ [1 : M ] | ∃ℓ ∈ Z : pℓ = (n,m)}.

We now give the technical details of the sketched pro-
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Figure 3. Ground truth tempo curve (step function) and various
computed tempo curves. (a) τ

FW
w

using a fixed window size with
small w (left) and large w (right). (b) τ

AW
v

using an adaptive
window size with small v (left) and large v (right).

cedure for the case that the neighborhoods are of a fixed

window (FW) size w ∈ N. The resulting tempo curve is

denoted by τFW
w : [1 : N ] → R≥0. For a given alignment

path p and an index n ∈ [1 : N ], we define

n1 := n−
⌊

w−1
2

⌋

and n2 := n +
⌈

w−1
2

⌉

. (1)

Then w = n2−n1 +1 and the tempo at reference position

n is defined by

τFW
w (n) =

w

ϕp(n2)− ϕp(n1) + 1
. (2)

The tempo curve τFW
w crucially depends on the window

size w. Using a small window allows for capturing sudden

tempo changes. However, in this case the tempo curve be-

comes sensible to inaccuracies in the alignment path and

synchronization errors. In contrast, using a larger window

smooths out possible inaccuracies, while limiting the abil-

ity to accurately pick up local phenomena. This effect is

also illustrated by Fig. 3 (a), where the performance is syn-

thesized from a temporally warped MIDI reference. We

continue this discussion in Sect. 4.

3.2 Adaptive Window Size

Using a window of fixed size does not account for specific

musical properties of the piece of music. We now intro-

duce an approach using an adaptive window size, which

is based on the assumption that note onsets are the main

source for inducing tempo information. Intuitively, in pas-

sages where notes are played in quick succession one may

obtain an accurate tempo estimation even when using only

a small time window. In contrast, in passages where only

few notes are played one needs a much larger window to

obtain a meaningful tempo estimation.

We now formalize this idea. We assume that the note

onsets of the MIDI reference are given in terms of fea-

ture indices. Furthermore, for notes with the same on-

set position we only list one of these indices. Let O =
{o1, . . . , oK} ⊆ [1 : N ] be the set of onset positions with

1 ≤ o1 < o2 < . . . < oK ≤ N . The distance between

two neighboring onset positions is referred to as inter on-

set interval (IOI). Now, when computing the tempo curve

at position n ∈ [1 : N ], the neighborhood of n is specified

not in terms of a fixed number w of feature indices but in
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terms of a fixed number v ∈ N of IOIs. This defines an

onset-dependent adaptive window (AW). More precisely,

let τAW
v : [1 : N ] → R≥0 denote the tempo function to

be computed. To avoid boundary problems, we extended

the set O to the left and right by setting ok := o1 + k − 1
for k < 1 and ok := oK + k − K for k > K. First,

we compute τAW
v for all indices n that correspond to onset

positions. To this end, let n = ok. Then we define

k1 := k −
⌊

v−1
2

⌋

and k2 := k +
⌈

v−1
2

⌉

.

Setting n1 := ok1
and n2 := ok2

, the tempo at reference

position n = ok is defined as

τAW
v (n) :=

n2 − n1 + 1

ϕp(n2)− ϕp(n1) + 1
. (3)

Note that, opposed to (2), the window size n2 − n1 + 1 is

no longer fixed but depends on the sizes of the neighbor-

ing IOIs around the position n = ok. Finally, τAW
v (n) is

defined by a simple linear interpolation for the remaining

indices n ∈ [1 : N ] \ O. Similar to the case of a fixed

window size, the tempo curve τAW
v crucially depends on

the number v of IOIs, see Fig. 3 (b). The properties of the

various tempo curves are discussed in detail in Sect. 4.

3.3 Combined Strategy

So far, we have introduced two different approaches us-

ing on the one hand a fixed window size and on the other

hand an onset-dependent adaptive window size for com-

puting average slopes of the alignment path. Combining

ideas from both approaches, we now present a third strat-

egy, where we first rectify the alignment path using onset

information and then apply the FW-approach on the recti-

fied path for computing the tempo curve. As in Sect. 3.2,

let O = {o1, . . . , oK} ⊆ [1 : N ] be the set of on-

sets. By possibly extending this set, we may assume that

o1 = 1 and oK = N . Now, within each IOI given

by two neighboring onsets n1 := ok and n2 := ok+1,

k ∈ [1 : K−1], we modify the alignment path p as follows.

Let ℓ1, ℓ2 ∈ [1 : L] be the indices with pℓ1 = (n1, ϕp(n1))
and pℓ2 = (n2, ϕp(n2)), respectively. While keeping the

cells pℓ1 and pℓ2 , we replace the cells pℓ1 + 1, . . . , pℓ2 − 1
by cells obtained from a suitably sampled linear function

having the slope n2−n1+1
ϕp(n2)−ϕp(n1)+1 . Here, in the sampling,

we ensure that the step size condition given by Σ is ful-

filled, see Sect. 2. The resulting rectification is illustrated

by Fig. 2 (right). Using the rectified alignment path, we

then compute the tempo curve using a fixed window size

w ∈ N as described in Sect. 3.1. The resulting tempo

curve is denoted by τFWR
w . This third approach, as our ex-

periments show, generally yields more robust and accurate

tempo estimations than the other two approaches.

4. EXPERIMENTS

In this section, we first discuss some representative exam-

ples and then report on a systematic evaluation based on

temporally warped music. In the following, we specify
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Figure 4. Tempo curves of four different interpretations played
by different pianists of the first ten measures (slow introductory
theme marked Grave) of Beethoven’s Pathétique Sonata Op. 13.
(a) Score of measures 4 and 5. (b) Tempo curves τ

FWR
w

for w ∝

3 seconds. (c) Tempo curves τ
AW
v

for v = 10 IOIs.

the window size w in terms of seconds instead of sam-

ples. For example, by writing w ∝ 3 seconds, we mean

that w ∈ N is a window size with respect to the feature

rate corresponding to 3 seconds of the underlying audio.

In our first example, we consider Beethoven’s

Pathétique Sonata Op. 13. The first ten measures corre-

spond to the slow introductory theme marked Grave. For

these measure, Fig. 4 (b) shows the tempo curves τFWR
w

for four different performances using the combined strat-

egy with a window size w ∝ 3 seconds. From these curves,

one can read off global and local tempo characteristics. For

example, the curves reveal the various tempi chosen by the

pianists, ranging from roughly 20 to 30 BPM. One of the

pianists (red curve) significantly speeds up after measure

5, whereas the other pianists use a more balanced tempo

throughout the introduction. It is striking that all four pi-

anists significantly slow down in measure 8, then acceler-

ate in measure 9, before slowing down again in measure

10. Musically, the last slow-down corresponds to the fer-

mata at the end of measure 10, which concludes the Grave.

Similarly, the curves indicate a ritardando in all four per-

formances towards the end of measure 4. In this passages,

there is a run of 64th notes with a closing nonuplet, see

Fig. 4 (a). Using a fixed window size, the ritardando effect

is smoothed out to a large extent, see Fig. 4 (b). How-

ever, having many consecutive note onsets within a short

passage, the ritardando becomes much more visible when

using tempo curves with an onset-dependent adaptive win-

dow size. This is illustrated by Fig. 4 (c), which shows the

four tempo curves τAW
v with v = 10 IOIs.

As a second example, we consider the Schubert Lied

Der Lindenbaum (D. 911 No. 5). The first seven measures

(piano introduction) are shown in Fig. 5 (a). Using the

combined strategy with a window size w ∝ 3 seconds,

we computed tempo curves for 13 different interpretations,

see Fig. 5 (b). As shown by the curves, all interpretations

exhibit an accelerando in the first few measures followed
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Figure 5. Tempo curves of 13 different performances of the
beginning of the Schubert song Der Lindenbaum. (a) Score of
measures 1 to 7. (b) Tempo curves τ

FWR
w

for w ∝ 3 seconds.

by a ritardando towards the end of the introduction. Inter-

estingly, some of the pianists start with the ritardando in

measure 4 already, whereas most of the other pianists play

a less pronounced ritardando in measure 6. These exam-

ples indicate that our automatically extracted tempo curves

are accurate enough for revealing interesting performance

characteristics.

In view of a more quantitative evaluation, we computed

tempo curves using different approaches and parameters

on a corpus of harmony-based Western music of various

genres. To allow for a reproduction of our experiments,

we used pieces from the RWC music database [13]. In

the following, we consider 15 representative pieces, which

are listed in Table 1. These pieces include five classical pi-

ano pieces, five classical pieces of various instrumentations

(full orchestra, strings, flute, voice) as well as five jazz

pieces and pop songs. To automatically determine the ac-

curacy of our tempo extraction procedures, we temporally

modified MIDI files for each of the 15 pieces. To this end,

we generated continuous piecewise linear tempo curves

τGT, referred to as ground-truth tempo curves. These

curves have a constant slope on segments of roughly 10
seconds of duration, where the slopes are randomly gen-

erated either using a value v ∈ [1 : 2] (corresponding

to an accelerando) or using a value v ∈ [1/2 : 1] (cor-

responding to a ritardando). These values cover a range

of tempo changes of ±100% of the reference tempo. In-

tuitively, the ground-truth tempo curves simulate on each

segment a gradual transition between two tempi to mimic

ritardandi and accelerandi. For an example, we refer to

Fig. 6. We then temporally warped each of the original

MIDI files with respect to a ground-truth tempo curve τGT

and generated from the modified MIDI file an audio ver-

sion using a high-quality synthesizer. Finally, we com-

puted tempo curves using the original MIDI files as ref-

erence and the warped audio versions as performances.

To determine the accuracy of a computed tempo curve

τ , we compared it with the corresponding ground-truth

tempo curve τGT. Here, the idea is to measure devia-

tions by scale rather than by absolute value. Therefore,

0 10 20 30 40 50 60 70 80 90 100 110 120
0

0.5

1

1.5

2

Figure 6. Piecewise linear ground-truth tempo curve (red) and
computed tempo curves (black).

FW AW FWR
RWC ID (Comp./Int., Instr.) µ σ µ σ µ σ

C025 (Bach, piano) 3.29 7.30 2.60 5.05 1.59 2.86
C028 (Beethoven, piano) 3.24 6.98 6.36 21.14 2.66 6.72
C031 (Chopin, piano) 3.32 7.72 2.77 4.76 1.75 3.42
C032 (Chopin, piano) 2.54 4.17 3.05 4.67 1.56 2.34
C029 (Schumann, piano) 4.52 8.86 4.18 5.97 2.44 5.13
C003 (Beethoven, orchestra) 4.20 5.39 10.58 22.97 3.56 4.79
C015 (Borodin, strings) 2.44 2.85 4.68 9.85 2.25 2.71
C022 (Brahms, orchestra) 1.70 1.95 2.41 2.96 1.31 1.66
C044 (Rimski-K., flute/piano) 1.62 2.59 2.47 4.27 1.61 2.58
C048 (Schubert, voice/piano) 2.61 3.27 3.95 7.76 2.07 2.98
J001 (Nakamura, piano) 1.44 1.87 1.44 2.43 1.03 1.59
J038 (HH Band, big band) 2.24 2.96 3.20 5.41 1.91 2.74
J041 (Umitsuki, sax/bass/perc.) 1.88 2.40 3.75 4.69 1.72 2.34
P031 (Nagayama, electronic) 2.01 2.42 8.35 14.89 1.94 2.39
P093 (Burke, voice/guitar) 2.50 3.26 6.21 14.74 2.34 3.13

Average over all 2.64 4.27 4.40 8.77 1.98 3.16

Table 1. Tempo curve evaluation using the approaches FW and
FWR (with w ∝ 4 seconds) and AW (with v = 10 IOIs). The ta-
ble shows for each of the 15 pieces the mean error µ and standard
deviation σ (given in percent) of the computed tempo curves and
the ground truth tempo curve. For generating the ground-truth
tempo curves, MIDI segments of 10 seconds were used.

as distance function, we use the average multiplicative dif-

ference and standard deviation (both measured in percent)

of τ and τGT. More precisely, we define

µ(τ, τGT) = 100 ·
1

N
·

N
∑

n=1

(

2| log2
(τ(n)/τGT(n))| − 1

)

.

Similarly, we define the standard deviation σ(τ, τGT). For

example, one obtains µ(τ, τGT) = 100% in the case

τ = 2 · τGT (double tempo) and in the case τ = 1
2 · τ

GT

(half tempo). Similarly, a computed tempo of 110 BPM or

90.9 BPM would imply a mean error of µ = 10% assum-

ing a ground-truth tempo of 100 BPM.

In a first experiment, we computed the curves τFW
w and

τFWR
w with w ∝ 4 seconds as well as τAW

v with v = 10
IOIs for each of the 15 pieces. Table 1 shows the mean

error µ and standard deviation σ between the computed

tempo curves and the ground truth tempo curves. For ex-

ample, for the Schubert song Der Lindenbaum with iden-

tifier C048, the mean error between the computed tempo

curve τFW
w and the ground-truth tempo τGT amounts

to 2.61%. This error decreases to 2.07% when using

the FWR-approach based on the rectified alignment path.

Looking at the average mean error over all pieces, one

can notice that the error amounts to 2.64% for the FW-

approach, 4.40% for the AW-approach, and 1.98% for

the FWR-approach. For example, assuming a tempo of

100 BPM, the last number implies a mean difference of

less than 2 BPM between the computed tempo and the ac-

tual tempo.

In general, the FWR-approach yields the best tempo es-
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FW FWR AW
w [sec]

µ σ µ σ
v [IOI]

µ σ

1 10.62 49.88 5.58 12.47 2 14.50 31.00
2 5.37 14.21 3.58 6.16 4 9.54 23.44
3 4.39 6.90 3.42 5.34 6 7.34 17.34
4 4.62 6.52 3.99 5.74 8 6.18 12.99
5 5.48 7.08 5.06 6.63 10 5.65 10.66
6 6.79 8.02 6.52 7.74 12 5.46 9.48
7 8.40 9.19 8.22 9.00 16 5.54 8.20
8 10.15 10.51 10.03 10.38 20 5.98 8.09

Table 2. Tempo curve evaluation using the approaches FW, AW,
and FWR with various window sizes w (given in seconds) and
v (given in IOIs). The table shows the average values over all
15 pieces, see Table 1. For generating the ground-truth tempo
curves, MIDI segments of 5 seconds were used.

timation, whereas the AW-approach often produces poorer

results. Even though the onset information is of crucial

importance for estimating local tempo nuances, the AW-

approach relies on accurate alignment paths that correctly

align the note onsets. Synchronization approaches as de-

scribed in [12] can produce highly accurate alignments in

the case of music with pronounced note attacks. For ex-

ample, this is the case for piano music. In contrast, such

information is often missing in string or general orches-

tral music. This is the reason why the purely onset-based

AW-strategy yields a relatively poor tempo estimation with

a mean error of 10.58% for Beethoven’s Fifth Symphony

(identifier C003). On the other hand, using a fixed window

size without relying on onset information, local alignment

errors cancel each other out, which results in better tempo

estimations. E. g., the error drops to 3.56% for Beethoven’s

Fifth Symphony when using the FWR-approach.

Finally, we investigated the dependency of the accuracy

of the tempo estimation on the window size. We generated

strongly fluctuating ground-truth tempo curves using MIDI

segments of only 5 seconds length (instead of 10 seconds

as in the last experiment). For the corresponding synthe-

sized audio files, we computed tempo curves for various

window sizes. The mean errors averaged over all 15 pieces

are shown in Table 2. The numbers show that the mean

error is minimized when using medium-sized windows.

E. g., in the FWR-approach, the smallest error of 3.42%
is attained for a window size of w ∝ 3 seconds. Actually,

the window size constitutes a trade-off between robustness

and temporal resolution. On the one hand, using a larger

window, possible alignment errors cancel each other out,

thus resulting in a gain of robustness. On the other hand,

sudden tempo changes and fine agogic nuances can be re-

covered more accurately when using a smaller window.

5. CONCLUSIONS

In this paper, we have introduced automated methods for

extracting tempo curves from expressive music recordings

by comparing the performances with neutral reference rep-

resentations. In particular when using a combined strategy

that incorporates note onset information, we obtain accu-

rate and robust estimations of the overall tempo progres-

sion. Here, the window size constitutes a delicate trade-

off between susceptibility to alignment errors and sensibil-

ity towards timing nuances of the performance. In prac-

tice, it becomes a difficult problem to determine whether

a given change in the tempo curve is due to an align-

ment error or whether it is the result of an actual tempo

change in the performance. Here, one idea for future work

is to use tempo curves as a means for revealing problem-

atic passages in the music representations where synchro-

nization errors may have occurred with high probability.

Furthermore, it is of crucial importance to further improve

the temporal accuracy of synchronization strategies. This

constitutes a challenging research problem in particular

for music with less pronounced onset information, smooth

note transitions, and rhythmic fluctuation.
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