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ABSTRACT

This paper describes a method for music classification based
solely on the audio contents of the music signal. More
specifically, the audio signal is converted into a compact
symbolic representation that retains timbral characteristics
and accounts for the temporal structure of a music piece.
Models that capture the temporal dependencies observed
in the symbolic sequences of a set of music pieces are
built using a statistical language modeling approach. The
proposed method is evaluated on two classification tasks
(Music Genre classification and Artist Identification) us-
ing publicly available datasets. Finally, a distance measure
between music pieces is derived from the method and ex-
amples of playlists generated using this distance are given.
The proposed method is compared with two alternative ap-
proaches which include the use of Hidden Markov Mod-
els and a classification scheme that ignores the temporal
structure of the sequences of symbols. In both cases the
proposed approach outperforms the alternatives.

1. INTRODUCTION

Techniques for managing audio music databases are essen-
tial to deal with the rapid growth of digital music distri-
bution and the increasing size of personal music collec-
tions. The Music Information Retrieval (MIR) community
is well aware that most of the tasks pertaining to audio
database management are based on similarity measures be-
tween songs [1–4]. A measure of similarity can be used for
organizing, browsing, visualizing large music collections.
It is a valuable tool for tasks such as mood, genre or artist
classification that also can be used in intelligent music rec-
ommendation and playlist generation systems.

The approaches found in the literature can roughly be
divided in two categories: methods based on metadata and
methods based on the analysis of the audio content of the
songs. The methods based on metadata have the disadvan-
tage of relying on manual annotation of the music contents
which is an expensive and error prone process. Further-
more, these methods limit the range of songs that can be
analyzed since they rely on textual information which may
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not exist. The other approach is based solely on the au-
dio contents of music signals. This is a challenging task
mainly due to the fact that there is no clear definition of
similarity. Indeed, the notion of similarity as perceived
by humans is hard to pinpoint and depends on a series of
factors, some dependent on historical and cultural context,
others related to perceptual characteristics of sound such
as tempo, rhythm or voice qualities.

Various content-based methods for music similarity have
been proposed in recent years. Most of them divide the au-
dio signal in short overlapping frames (generally10-100ms
with 50% overlap), and extract a set of features usually re-
lated to the spectral representation of the frame. This ap-
proach converts each song into a sequence of feature vec-
tors, with a rich dynamic structure. Nevertheless, most of
the similarity estimation methods ignore the temporal con-
tents of the music signal. The distribution of the features
from one song or a group of songs are modeled, for in-
stance, with thek-means algorithm [3], or with a Gaus-
sian mixture model [1, 5, 6]. To measure similarity, mod-
els are compared in a number of ways, such as the Earth-
Mover’s distance [3], Monte-Carlo sampling [1], or nearest
neighbor search. Additionally, some information about the
time-dependencies of the audio signal can be incorporated
through some statistics of the features over long temporal
windows (usually a few seconds), like in [4–8].

In this work we propose computing a measure of sim-
ilarity between songs based solely on timbral characteris-
tics. We are aware that relying only on timbre to define
a music similarity measure is controversial. Human per-
ception of music similarity relies on a much more com-
plex process, albeit timbre plays an important role in it. As
pointed out by J.-J. Aucouturier and J. Pachet [1], methods
that aim at describing a timbral quality of whole song will
tend to find similar pieces that have similar timbres but be-
long to very different genres of music. For instance, pieces
like a Schumann sonata or aBill Evans tune will have a
high degree of similarity due to their common romantic
piano sounds [1]. Following our approach by modeling
time dependencies between timbre-based feature vectors,
we expect to include some rhythmic aspects in the mod-
els. As we will see in section 3.3, this approach leads
to playlists with more variety while conserving the same
overall mood.

We use a single type of low-level features: the Mel Fre-
quency Cepstral Coefficients (MFCC). The MFCC vectors
are commonly used in audio analysis and are described as
timbral features because they model the short-time spec-
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tral characteristics of the signal onto a psychoacoustic fre-
quency scale. On their own, the MFCC vectors do not
explicitly capture the temporal aspects of the music, and
therefore are often associated with the “bag of frames”
classifiers. In this type of classifiers, songs with the same
MFCC frames in different order would be yield the same
results. It is our contention that the order of MFCC frames
is indeed important and that this information can be used
to estimate a similarity measure between songs. We use a
language model approach to achieve this result. The most
related works include Soltauet al. [9], Chenet al. [10], and
Li and Sleep [11].

In Soltauet al. [9], each music is converted into a se-
quence of distinct music events. Statistics like unigram,
bigram, trigram counts are concatenated to form a fea-
ture vector that is fed into a neural network for classifi-
cation. In Chen et al. [10] a text categorization technique
is proposed to perform musical genre classification. They
build a HMM from the MFCC coefficients using the whole
database. The set of symbols is represented by the states
of the HMM. Music symbols are tokenized by computing
1 and 2-grams. The set of tokens is reduced using Latent
Semantic Indexing. In Li and Sleep, a support vector ma-
chine is used as a classifier. The feature are based on n-
grams of varying length obtained by a modified version of
the Lempel-Ziv algorithm.

This paper is organized as follows: In section 2. we de-
scribe our method for music similarity estimation. In sec-
tion 3. we report and analyze the results of the algorithm on
various task and datasets. We also compare performance of
our approach to other types of techniques. We close with
some final conclusions and future work.

2. PROPOSED APPROACH

The proposed approach is divided into several steps. First,
the music signals are converted into a sequence of MFCC
vectors1 . Then, the vectors are quantized using a hierar-
chical clustering approach. The resulting clusters can be
interpreted as codewords in a dictionary. Every song is
converted into a sequence of dictionary codewords. Prob-
abilistic models are then built based on codeword transi-
tions of the training data for each music category, and for
classification, the model that best fits a given sequence is
chosen. The details of each stage are described in the fol-
lowing sections. In the last section we consider building
models based on a single music piece, and describe an ap-
proach that allows us to define a distance between two mu-
sic pieces.

2.1 Two-Stage Clustering

The objective of the first step of our algorithm is to identify,
for each song, a set of the most representative frames. For
each track, the distribution of MFCC vectors is estimated
with a gaussian mixture model (GMM) with five gaussians

1 Twelve Mel Frequency Cepstral Coefficients are calculated for each
frame, all audio files were sampled at 22050Hz, mono and each frame has
a duration of 93ms with 50% overlap
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whereµi represent the Gaussian’s mean andf an MFCC
frame. We did not perform exhaustive tests in order to
chose the optimal value for the number of Gaussians (N )
but realized some tests on a reduced number of tracks and
decided to useN = 5. At this step, the use of GMM
is similar to Aucouturier’s work [12] were some hints are
given about the optimal value ofN . The parameters are
estimated using the Expectation-Maximization (EM) algo-
rithm. The probabilistic models of the songs are used to se-
lect a subset of the most likely MFCC frames in the song.
For each tracka, Fa, is the set ofk1 frames that maximize
the likelihood of the mixture.

Contrasting with Aucouturier’s approach, we do not use
the GMM as the representation of tracks in the database.
This leads to an increased memory requirement during the
training phase that is later reduced as we will see in the
next section.

The second step consists in finding the most represen-
tative timbre vectors in the set of all music pieces. At this
stage, the dataset correspond to the frames extracted from
each song:F =

⋃Nm

j Fj and the objective is to deduce
k2 vectors that represent this dataset. This is achieved
using the k-means algorithm. As an alternative, a GMM
trained on the setF was also used. But thanks to the ro-
bustness, scalability and computational effectiveness ofthe
k-means algorithm, better results were obtained using this
simpler approach. More precisely, the EM algorithm is
sensible to parameters like the number of gaussians and
the dimension and the number of data points, and can result
in ill-conditioned solutions. That was verified in numerous
cases, and we managed to train GMMs with only a reduced
number of kernels that was too small for our objectives.

The output of this two-stage clustering procedure is a
set ofk2 twelve-dimensional centroids that represent the
timbres found in a set of music pieces. The value of the
k1 parameter must be chosen in order to balance between
precision2 , computing and space resources. One of the
advantages of dividing into two steps is scalability. Indeed,
the first stage has to be done only once and, as we will
see in section 3. can be used to compute various kinds of
models.

2.2 Language Model Estimation

The set ofk2 vectors obtained during the previous step is
used to form a “dictionary” that allow us to transform a
track into a sequence of symbols. For each MFCC frame
f a symbols corresponding to the nearest centroidci is
assigned:

s = argmin d(f, ci)
i=1..k2

2 We expect that higher values ofk1 parameter will lead to a more
accurate description of the set of timbres present in a song.
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Figure 1. System structure for the language modeling approach. The music signals are converted into a sequence of MFCC
vectors, and a two-stage clustering is performed on all the training sequences. Then all the MFFCs are vector quantized
resulting in a sequences of symbols. The sequences are divided by category, and the bigrams probabilities are estimated.

whered() is the Euclidian distance. Once tracks are trans-
formed into sequences of symbols, a language modeling
approach is used to build classifiers. A Markov Model is
built for each category by computing the transition proba-
bilities (bigrams) for each set of sequences. The result is a
probability transition matrix for each category containing,
for each pair of symbols(si, sj), the probabilityP (sj |si)
of symbolsi to be followed by the symbolsj .

This matrix cannot be used like this because it contains
many zero-frequency transitions. Many solutions to this
problem have been studied by the Natural Language Pro-
cessing community. Collectively known as “smoothing”
the solution consist in assigning a small probability mass
to each unseen event in the training set. In the context of
this work we experimented several approaches such as the
Expected Likelihood Estimator and the Good-Turing esti-
mator [13]. Neither of these approaches are suitable for our
case, because the size of our vocabularies is much smaller
than those commonly used in Natural Language Process-
ing. We used a technique inspired by the “add one” strat-
egy that consists in adding one to the counts of events. Af-
ter some tests, we concluded that adding a small constant
ǫ = 1.0e − 5 to each zero probability transition allowed
us to solve the smoothing problem without adding to much
bias toward unseen events.

Once a set of models is built, we are ready to clas-
sify new tracks into one of the categories. A new track is
first transformed into a sequence of symbols (as explained
above). Given a modelM , the probability that it would
generate the sequenceS = s1, s2, ...sn is:

PM (si=1..n) = PM (s1)

n
∏

i=2

PM (si|si−1) (3)

which is better calculated as

SM (si=1..n)=log(PM (si=1..n))

=log(PM (s1))+

n
∑

i=2

log(PM (si|si−1))
(4)

This score is computed for each modelM and the class
corresponding to the model that maximize the score values
is assigned to the sequence of symbols. One of the benefits
of our method is that once the models are computed, there
is no need to have access to the audio files and MFCC fea-
tures since only the sequences of symbols are used. With
vocabulary size between 200 and 300 symbols the space
needed to keep this symbolic representation is roughly one
byte/frame or 1200 bytes/minute.

2.3 Distance Between Music Pieces

Given a database of music tracks, a vocabulary is build
following the steps described in section 2.1. Then, instead
of creating a model for each “class” or “genre” a model is
built for each track (i.e. a probability transtion matrix).Let
Sa(b) be the score of musicb given the model of musica
(see section 2.2). We can define a distance between music
a and musicb by:

d(a, b) = Sa(a) + Sb(b)− Sa(b)− Sb(a) (5)

This distance is symmetric but it is not a metric distance
sinced(a, b) = 0 ⇒ a = b is not verified. It is a diffi-
cult task to evaluate a distance between music pieces since
there is no “ground truth”. One can examine the neighbor-
hood of a song and verify to what extend the songs found
nearby show similarities. In our case, the expected sim-
ilarities should be relative to timbral characteristics since
we are using features that represent the timbre. A common
application of distances measures over music pieces is to
generate playlists. The user selects a song he likes (the
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C E J M R W %acc. pre. rec.
Classical 304 2 0 0 0 14 95.0 0.95 0.95
Electronic 1 96 0 0 10 7 84.2 0.74 0.84
JazzBlues 0 2 16 0 6 2 61.5 1.00 0.62
MetalPunk 0 1 0 24 18 2 53.3 0.89 0.53
RockPop 1 13 0 3 78 7 77.5 0.63 0.77
World 17 15 0 0 12 78 63.9 0.72 0.64

Table 1. Confusion matrix, accuracy, precision and recall
for each class of the ISMIR 2004 dataset.

seed song) and the system returns a list of similar songs
from the database.

3. EXPERIMENTAL RESULTS AND ANALYSIS

3.1 Genre Classification task

We used the ISMIR 2004 genre classification dataset which
is composed of six musical genres with a total of 729 songs
for training and 729 songs for test3 . The method described
in sections 2.1 and 2.2 was used to classify this dataset. Ta-
ble 1 shows the confusion matrix on the test set, classifica-
tion rate, precision and recall for each class, obtained using
parametersk1 = 200 andk2 = 300. The overall accuracy
is 81.85% if we weight percentages with the prior proba-
bility of each class. These results compare favorably with
those obtained with other approaches (see for example [5],
78.78% and [14], 81.71%). As can be seen in the follow-
ing table, the method is not too sensible to its parameters
(k1 andk2).

k1 k2 accuracy k1 k2 accuracy
100 25 74.90% 200 200 81.07%
200 50 77.37% 200 300 81.89%
100 50 79.70% 200 400 81.48%
100 100 80.93% 300 300 81.76%
100 200 81.34% 300 400 81.07%
100 300 81.76% 300 1000 80.52%

3.2 Artist Identification task

One of our objectives with this task is to assess the perfor-
mance of our method when models are based on smaller
datasets. Indeed, contrasting with genre classification, in
the case of Artist Identification, a model is build for each
artist. We evaluated our method using two datasets:arti-
st20 4 that contains 1412 tracks from 20 artists. Each
artist is represented by 6 albums. The second dataset focus
on Jazz music and is based on authors’ collection. It con-
tains 543 tracks from 17 artists (we will call this dataset
Jazz17). This dataset is smaller thanartist20 but
the interest here is to see if our system is able to distin-
guish songs that belong to a single genre. The abreviations
used for the names of the 17 artists are: DK: Diana Krall,
SV: Sarah Vaughan, DE: Duke Ellington, TM: Thelonious
Monk, CB: Chet Baker, MD: Miles Davis, CJ: Clifford
Jordan, NS: Nina Simone, JC: John Coltrane, FS: Frank

3 The distribution of songs along the six genres is: classical: 320; elec-
tronic: 115 jazzblues: 26; metalpunk: 45; rockpop: 101; world: 122 for
the training and the test set.This data set was used for the Genre Classifi-
cation contest organized in the context of the International Symposium on
Music Information Retrieval - ISMIR 2004 (http://ismir2004.ismir.net).

4 This dataset is available upon request, see: http://labrosa.ee.-
columbia.edu/projects/artistid/ .

Sinatra, LY: Lester Young, OP: Oscar Peterson, EF: Ella
Fitzgerald, AD: Anita O’Day, BH: Billie Holliday, AT: Art
Tatum and NJ: Norah Jones.

Regarding theJazz17 dataset, the results are shown in
the following table. For two sets of parameter values (k1

andk2) the training and test was repeated ten times and
the two last columns show the average accuracy and the
corresponding standard deviation observed on the test set.

k1 k2 mean std. dev.
100 100 73.49% 1.75
200 200 74.25% 2.25

Because of the reduced number of albums per artist, 50%
of each artist’s songs were randomly selected and for train-
ing while the other half was used for test. Table 2 contains
a confusion matrix obtained withJazz17. As can be seen
in the confusion matrix, number of misclassifications occur
between songs with strong vocals and are thus understand-
able.

The results obtained with theartist20 dataset are
shown in the following table. We used two different setups.
For rows 1 and 2, 50% of an artist’s songs are randomly
selected and used for training while the other half is used
for testing. In rows 3 and 4 we used the strategy suggested
in [15]. For each artist an album is randomly selected for
test and the other five albums are used for training.

k1 k2 mean std. dev.
1 100 100 57.40% 0.74
2 200 200 59.14% 1.49
3 100 200 45.28% 7.27
4 200 200 48.98% 7.96

The results shown in rows 3 and 4 are worse than those
obtained by Dan Ellis [15] since his approach leads to 54%
accuracy using MFCC features and 57% using MFCC and
chroma features.

As we can see, choosing the training and testing sets
randomly leads to significantly better results than keeping
one album for test. This is due to the “album effect” [16].
These results show that despite the name of the task, it is
clear that, at least in our case, the problem solved is not
the Artist Identification problem. Indeed, our method aims
at classifying songs using models based on timbre. Dif-
ferent albums of the same artist may have very different
styles, use different kinds of instruments, sound effects and
recording conditions. If a sample of each artist’s style is
found in the training set, it is more likely that the classifier
will recognize a song with similar timbre. If every songs of
an album are in the test set, then the accuracy will depend
on how close are the mixtures of timbres of this album from
those of the training set. This is confirmed by the standard
deviation observed with both approaches. When trying to
avoid the “album effect” we observe a large variation of
performance due to the variation of the datasets. In one
of our tests we reached an accuracy of 62.3% but this was
due to a favorable combination of albums in the training
and test sets.
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Notwithstanding these observations the results are inter-
esting. In particular with theJazz17 dataset, we can see
that the timbre-based classification is quite accurate even
with music pieces that belong to the same genre.

3.3 Similarity Estimation task

The good results obtained for the classification of large
sets of tracks (Genre classification) and more specific sets
(Artist Identification) led us to consider building models
based on a single track. In this section some examples
of playlists generated using our distance are shown and
discussed. From our Jazz music set (see section 3.2), we
picked some well-known songs and generated a playlist of
20 most similar songs.

In the first example, the seed song is “Come Away With
Me” by Norah Jones. The playlist, shown in table 3, is
composed of songs where vocals are the dominant timbre.
It is interesting to note that with one exception, the artists
that appear in this list are all women. The timbre of Chet
Baker’s voice is rather high and in sometimes may be con-
fused with a women’s voice. However, John Coltrane’s
“Village Blues” appears as an intruder in this list.

Dist. Artist Song
0 0 N. Jones Come Away with Me
1 4093 N. Jones Come Away with Me (other version)
2 10774 D. Krall Cry Me a River
3 11345 N. Jones Feelin’ the Same Way
4 12212 D. Krall Guess I’ll Hang My Tears Out To Dry
5 12333 J. Coltrane Village blues
6 13015 D. Krall Every Time We Say Goodbye
7 13201 D. Krall The Night we Called it a Day
8 13210 N. Jones Don’t Know Why
9 13401 D. Krall I Remember You

10 13458 D. Krall Walk On By
11 13758 D. Krall I’ve Grown Accustomed To Your Face
12 13852 S. Vaughan Prelude to a Kiss
13 13915 D. Krall Too Marvelous For Words
14 13969 D. Krall The Boy from Ipanema
15 14099 N. Jones Lonestar
16 14114 C. Baker My Funny Valentine
17 14405 D. Krall The Look of Love
18 14674 N. Jones Lonestar (other version)
19 15039 D. Krall Este Seu Olhar

Table 3. Playlist generated from “Come Away With Me”

The playlist generated starting with the seed song “Blue
Train” by John Coltrane (Table 4) is characterized by Sax-
ophone solos and trumpet. Excluding the songs from the
same album, the songs found in the playlist are performed
by Miles Davis, Dizzy Gillespie whose trumpets are as-
similated with saxophone and Ella Fitzgerald and Frank
Sinatra who are accompanied by a strong set of copper in-
struments.

3.4 Other Approaches

3.4.1 Using unigrams and bigrams

Our classification method is based on models of bigram
probabilities whereas most of previous approaches rely on
the classification of frame-based feature vectors or on es-
timates of statistical moments of those features computed
on wider temporal windows. In order to quantify the bene-
fit of taking into account transition probabilities an hybrid

Dist. Artist Song
0 0 J. Coltrane Blue Train
1 11367 J. Coltrane Moment’s Notice
2 14422 J. Coltrane Lazy Bird
3 17344 J. Coltrane Locomotion
4 23418 E. Fitzgerald It Ain’t Necessarily So
5 25006 E. Fitzgerald I Got Plenty o’ Nuttin’
6 25818 F. Sinatra I’ve Got You Under My Skin
7 27054 M. Davis So What
8 27510 M. Davis Freddie Freeloader
9 28230 E. Fitzgerald Woman is a Sometime Thing

10 28598 S. Vaughan Jim
11 28756 F. Sinatra Pennies From Heaven
12 29204 D. Gillespie November Afternoon
13 30299 M. Davis Bess oh Where’s my Bess
14 31796 F. Sinatra The Way You Look Tonight
15 31971 E. Fitzgerald There’s a Boat Dat’s Leavin’ Soon for NY
16 32129 E. Fitzgerald Dream A Little Dream of Me
17 32232 J. Coltrane I’m Old Fashioned
18 32505 E. Fitzgerald Basin’ Street Blues
19 34045 M. Davis All Blues

Table 4. Playlist generated from “Blue Train”

approach was implemented. With this approach, the clas-
sification of a sequence depends on a linear combination of
unigrams and bigrams. If we consider only unigrams, the
score of a sequence os symbolssi=1..n is:

S′M (si=1..n) = log (PM (si=1..n)) =

n
∑

i=1

log (PM (si))

Using the score computed for bigrams (see equation 4), a
linear combination can be writtem as:

S′′M (si=1..n) = αS′M (si=1..n)+(1−α)SM (si=1..n) (6)

whereα ∈ [0, 1]. This approach was experimented on the
ISMIR 2004 dataset. The results are shown in the follow-
ing table:

α 1.0 0.5 0.0
accuracy 71.88% 77.64% 81.89%

Whenα = 1, only unigrams are taken into account whereas
α = 0 reverts to the case where only bigrams are con-
sidered. As we can see in this table, the introduction of
unigrams in the classification process in not beneficial. A
closer look at unigram probabilities give an explaination
to these observations. The following table show, for each
class, the number of clusters were the class is most repre-
sented, the average probability (and standard deviation) of
observing the classM given a symbols, (P (M |si)).

Cl. El. JB MP RP Wo.
#C 73 68 4 9 16 30
P (M |s) 0.599 0.503 0.578 0.423 0.409 0.471
std.dev. 0.194 0.162 0.180 0.063 0.103 0.139

One can see that for three classes this average probabil-
ity is below 0.5 i.e. most symbols represents a mixture of
timbres. This explains why unigram probabilities are not a
good indicator of the class.
3.4.2 Hidden Markov Models

We implemented another technique commonly used to model
time-varying processes, the Hidden Markov Models (HMMs).
These models were tested on the genre classification task
with the ISMIR 2004 genre dataset. The same (discrete)
sequences used to train the language models were also used
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DK SV DE TM CB MD CJ NS JC FS LY OP EF AD BH AT NJ
DK 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
SV 0 9 0 0 1 0 0 0 0 0 0 1 1 5 0 0 0
DE 0 0 5 0 0 1 0 0 0 0 0 0 0 1 0 0 0
TM 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0
CB 0 2 0 0 20 1 1 1 0 2 0 0 0 0 0 0 0
MD 0 2 0 0 1 14 1 0 0 1 0 0 0 0 0 0 0
CJ 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0
NS 0 1 0 0 1 0 0 9 0 0 1 0 1 0 0 0 0
JC 0 0 0 0 1 2 0 0 2 0 0 0 1 0 0 0 0
FS 0 0 0 0 0 0 0 0 0 20 0 0 3 0 0 0 0
LY 0 1 0 0 4 0 0 0 0 0 11 2 1 1 1 0 0
OP 0 1 0 0 0 0 0 1 0 0 1 11 0 0 0 0 0
EF 0 4 0 0 0 0 0 0 0 0 2 0 9 2 0 0 0
AD 0 0 0 0 1 0 0 0 0 1 0 0 3 15 0 0 0
BH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 0 0
AT 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 18 0
NJ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16

Table 2. Confusion matrix obtained with theJazz17 dataset.

in the HMM’s training. For classification, we calculated
the probabilities of a given sequence with the HMM’s trained
for different genres, and assigned the music to the genre
with the highest probability.

We used left-right models with2, 3 and4 delays, and a
fully connected model. We also tested these models with
10 and 20 hidden states. The results, shown in the fol-
lowing table, indicate that the performance of the HMMs
is worse than our method. Nevertheless, it should be noted
that in our approach, we need a significant number of states
(between 100 and 400) in order to achieve reasonable ac-
curacy in timbre modeling. To train an HMM with such a
number of hidden states would require a huge amount of
data in order for the model to converge.

HMM LR-2 LR-3 LR-4 FC
10 states 68.3% 69.3% 68.7% 69.1%
20 states 69.1% 69.8% 69.5% 69.5%

4. CONCLUSION AND FUTURE WORK

We described a method5 for the classification of music
signals that consists in a two-stage clustering of MFCC
frames followed by a vector quantization and a classifica-
tion scheme based on language modeling. We verified that
the method was suitable for problems with different scales:
Genre Classification, Artist Identification and computing
of a distance between music pieces. The distance measure,
used on a set of songs belonging to a single genre (Jazz),
allowed us to derive consistent playlists. The proposed ap-
proach was compared with an HMM-based approach and a
method that involves a linear combination of unigrams and
bigram. On-going work include testing approaches based
on compression techniques for symbolic strings.
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