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ABSTRACT

Empirical results demonstrate, that human subjects rate

harmonies, e.g. major and minor triads, differently with re-

spect to their sonority. These judgements of listeners have

a strong psychophysical basis. Therefore, harmony percep-

tion often is explained by the notions of dissonance and

tension, computing the consonance of one or two intervals.

In this paper, a theory on harmony perception based on the

notion of periodicity is introduced. Mathematically, peri-

odicity is derivable from the frequency ratios of the tones

in the chord with respect to its lowest tone. The used ratios

can be computed by continued fraction expansion and are

psychophysically motivated by the just noticeable differ-

ences in pitch perception. The theoretical results presented

here correlate well to experimental results and also explain

the origin of complex chords and common musical scales.

1. INTRODUCTION

1.1 Motivation

Music perception and composition seem to be influenced

not only by convention or culture, manifested by musical

styles or composers, but also by the psychophysics of tone

perception [1–3]. Thus, in order to better understand the

process of musical creativity and information retrieval, the

following questions should be addressed:

• What are underlying (psychophysical) principles of

music perception?

• How can the perceived sonority of chords and scales,

in particular of western music, be explained?

Therefore, in the rest of this section (Sect. 1), we will

introduce basic musical notions and results. After that, we

will briefly review existing psychophysical theories on har-

mony perception (Sect. 2), which are often based on the

notions dissonance and tension, taking harmonic overtone

spectra into account. In contrast to this, the approach pre-

sented here (Sect. 3) is simply based on the periodicity of

chords. Applying this theory to common musical chords

and also scales (Sect. 4), shows a very good correlation to

empirical results, that e.g. most subjects prefer major to
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minor chords. Finally, we will highlight the psychophys-

ical basis of the proposed approach, by reviewing some

recent results from neuro-science on periodicity detection

of the brain, and end up with conclusions (Sect. 5).

1.2 Basic Musical Notions

Before we are able to address the problem of harmony per-

ception, we should clarify the terminology we use. For this,

we follow the lines of [2]. The basic entity we have to deal

with is a tone: A pure tone is a tone with a sinusoidal wave-

form. It has a specific pitch, corresponding to its perceived

frequency f , usually measured in Hertz (Hz), i.e. periods

per second. In practice, pure tones almost never appear.

The tones produced by real instruments like strings, tubes,

or the human voice have harmonic or other overtones. The

frequencies of harmonic overtones are integer multiples of

a fundamental frequency f . For the frequency of the n-th

overtone (n ≥ 1), it holds fn = n · f , i.e. f1 = f . The am-

plitudes of the overtones define the spectrum of a tone or

sound and account for its loudness and specific timbre.

A harmony in an abstract sense can be identified by

a set of tones forming an interval, chord, or scale. Two

tones define an interval, which is the distance between

two pitch categories. The most prominent interval is the

octave, corresponding to a frequency ratio of 2/1. Since
the same names are assigned to notes an octave apart, they

are assumed to be octave equivalent. An octave is usually

divided into 12 semitones in western music, correspond-

ing to a frequency ratio of
12
√
2 in equal temperament (cf.

Sect. 3.3). Thus, intervals may also be defined by the num-

ber of semitones between two tones. A chord is a com-

plex musical sound comprising three or more simultaneous

tones, while a scale is a set of musical notes, whose cor-

responding tones usually sound consecutively. Both can be

identified by the numbers of semitones in the harmony.

A triad is a chord consisting of three tones. Classical

triads are built from major and minor thirds, i.e., the dis-

tance between successive pairs of tones are 3 or 4 semi-

tones. For example, the major triad consists of the semi-

tones {0,4,7}, which is the root position of this chord. An
inversion of a chord is obtained by transposing the cur-

rently lowest tone by an octave. Fig. 1 (a) shows the three

inversions of the E major chord, including the root posi-

tion. Fig. 1 (b)–(e) shows all triads that can be build from

thirds including their inversion, always with e′ as lowest
tone. Fig. 1 (f) shows the suspended chord, built from per-

fect fourths (5 semitones). Its last inversion, consisting of

the semitones {0,5,10}, reveals this.
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G
(a) triads

4̄̄̄ 4̄̄̄ ¯¯4¯
(b) major

4̄̄̄ 6̄̄̄ ¯4̄̄
(c) minor

¯¯¯ 4̄̄4̄ ¯6̄̄
(d) diminished

¯2̄̄ ¯¯2¯ 2̄̄2̄
(e) augmented

4̄̄4̄
(f) suspended

¯¯¯ 4̄̄̄ ¯¯¯

Figure 1. Triads and their inversions.

2. THEORIES ON HARMONY PERCEPTION

Chord classes lead to different musical modes. The ma-

jor chord is often associated with emotional terms like

happy, strong, or bright, and, in contrast to this, the minor

chord with terms like sad, weak, or dark. Empirical results

(see e.g. [4]) reveal a preference ordering on the perceived

sonority of the triads as follows: major ≺ minor ≺ dimin-

ished ≺ augmented. Since all these triads are built from

thirds, thirds do not provide an explanation of this pref-

erence ordering on its own. Therefore, let us now review

existing theories on harmony perception, discussing some

of their merits and drawbacks.

2.1 Explanation by Overtones

Overtones can explain the origin of the major triad and

hence its high perceived sonority. The major triad appears

early in the sequence, namely overtones 4, 5, 6 (root posi-

tion) and —even earlier— 3, 4, 5 (second inversion). But

it is well-known, that overtones fail to explain the origin of

the minor chord.

2.2 Dissonance and Tension

Since the origin of harmony and scales cannot be explained

well by overtones, newer explanations base upon the no-

tions of dissonance [2,5] and tension [6]. In general, disso-

nance is the opposite to consonance, meaning how well

tones sound together. Although this approach correlates

better to the empirical results on harmony perception, it

does not explain the low perceived sonority of the dimin-

ished or the augmented triad, which are built from two

minor or major thirds, respectively. Therefore, [6] adopts

the argument from psychology that neighboring intervals

of equivalent size are instable and produce a sense of tonal

tension, that is resolved by pitch changes leading to un-

equal intervals. Since lowering any tone in an augmented

triad by one semitone leads to a major triad and raising to a

minor triad, [6] assumes sound symbolism, where the ma-

jor triad is associated with social strength and the minor

triad with social weakness. But on the contrary, a minor

triad becomes a major triad by raising the third. In ad-

dition, it is unclear whether suspended triads, built from

two perfect fourths, also have a low perceived sonority. Fi-

nally, most of the empirical experiments on harmony per-

ception present only single chords to the tested subjects.

This means, there is actually no pitch movement at all.

3. A PERIODICITY-BASED THEORY

The approaches discussed so far more or less take the fre-

quency spectrum of a sound as their starting point. Obvi-

(a)

(b)

(c)

(d)

Figure 2. Sinusoids of the major triad.

ously, analyzing the frequency spectrum is closely related

to analyzing the time domain (periodicity). Fourier trans-

formation allows to translate between both mathematically.

However, subjective pitch detection, i.e., the capability of

our auditory system to identify the repetition rate (peri-

odicity) of a complex tone sensation, only works for the

lower but musically important frequency range up to about

1.500Hz [3]. In consequence, a missing fundamental tone

can be assigned to each interval. The tone with the respec-

tive frequency, called virtual pitch of the interval, is not

present as an original tone component. It has nothing to do

with (first-order) beats and is perceived not directly in the

ear, but in the brain.

3.1 Periodicity Pitch of Chords

For intervals, i.e. two tones, the concept of virtual pitch

has been studied many times in the literature (see [3] and

references therein). The idea in this paper now is to trans-

fer this concept to chords by considering relative peri-

odicity, i.e. the period length of complex sinusoids rel-

ative to the period length of the frequency of the low-

est tone component (cf. [7, Sect. 7.1]). For example, the

A major triad in just intonation consists of three tones

with (absolute) frequencies f1 = 440Hz, f2 = 550Hz, and

f3 = 660Hz. The respective frequency ratios wrt. the low-

est tone (a′) are F1 = 1/1, F2 = 5/4 (third), and F3 = 3/2
(fifth), corresponding to the semitones {0,4,7}. Fig. 2 (a)–
(c) show the sinusoids for the three pure tone components

and Fig. 2 (d) their superposition, i.e. the graph of the func-

tion sin(ω1t) + sin(ω2t) + sin(ω3t), where ωi = 2π fi are

the respective angular frequencies, and t is the time.

As one can see, the period length of the chord is (only)
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four times the period length of the lowest tone for this ex-

ample. In the following, we call this ratio h. It depends on

the frequency ratios {a1/b1, . . . ,ak/bk} of the given chord.
We assume, that each frequency ratio Fi is a fraction ai/bi
(in its lowest terms), because otherwise no finite period

length can be found in general, and it holds Fi ≈ fi/ f1 for
1≤ i≤ k. This means, all frequencies are relativized to the

lowest frequency f1, and F1 = 1. The value of h then can

be computed as lcm(b1, . . . ,bk), i.e., it is the least common
multiple (lcm) of the denominators of the frequency ratios.

This can be seen as follows: Since the relative period length

of the lowest tone T1 = 1/F1 is 1, we have to find the small-

est integer number that is an integer multiple of all relative

period lengths Ti = 1/Fi = bi/ai for 1 < i ≤ k. Since after

ai periods of the i-th tone, we arrive at the integer bi, h can

be computed as the least common multiple of all bi.

3.2 A Hypothesis on Harmony Perception

We now set up the following hypothesis on harmony per-

ception: The perceived sonority of a chord, called har-

monicity in this context, decreases with the value of h. For

the major triad in root position we have h = 4 (see above),

which is quite low. Therefore, its predicted sonority is high.

This correlates well to the empirical results, in general bet-

ter than the approaches discussed in the previous section

(Sect. 2), as we will see later on (in Sect. 4). In addition, the

periodicity-based theory presented here is computationally

simple, because it needs no assumptions on parameters,

such as harmonic overtone spectra. Neither complex sum-

mation nor computing local extrema is required. Only the

frequency ratios of the tone components in the chord are

needed as input parameters. But we still have to answer

the question, which frequency ratios should be used in the

computation of h. Since this is done in a special way here,

we present this now in more detail.

3.3 Tuning and Frequency Ratios

The frequencies for the k-th semitone in equal tempera-

ment with twelve tones per octave can be computed as

fk = 12
√
2 k · f1, where f1 is the frequency of the lowest tone.

The respective frequency ratios are shown in Tab. 1 (a).

The values grow exponentially and not linearly, following

the Weber-Fechner law in psychophysics, which says that,

if the physical magnitude of stimuli grows exponentially,

then the perceived intensity grows only linearly. In equal

temperament, all keys sound equal. This is essential for

playing in different keys on one instrument and for mod-

ulation, i.e. changing from one key to another within one

piece of music. Since this seems to be universal, at least

in western music, we will adopt the equal temperament as

reference system for other tunings.

The frequency ratios in equal temperament are irra-

tional numbers (except for the ground tone and its oc-

taves), but for periodicity detection they must be fractions,

as mentioned above. Let us thus consider other tunings

with rational frequency ratios. The oldest tuning with this

property is probably the Pythagorean tuning, shown in

Tab. 1 (b). Here, frequency relationships of all intervals

have the form 3m/2n for some integers m and n, i.e., they

are based on fifths, strictly speaking, a stack of perfect

fifths (frequency ratio 3/2), applying octave equivalence.

However, although huge numbers appear in the numerators

and denominators of the fractions in Pythagorean tuning,

the relative errors compared to equal temperament (shown

in brackets in Tab. 1) grow up to more than 1%.

In fact, the Pythagorean tuning does not follow results

of psychophysics, namely that human subjects can dis-

tinguish frequency differences for pure tone components

only up to a certain resolution, namely 0.5% under opti-

mal conditions. For the musically important low frequency

range, especially the tones in (accompanying) chords, this

so-called just noticeable difference is worse, namely only

below about 1% [3]. Therefore, we should look for tun-

ings, where the relative error is approximately 1%. In ad-

dition, the frequency ratios should be simple integer ratios,

i.e. fractions with small numerators and denominators. In

order to achieve the latter, we can look in the harmonic

overtone sequence,when a tone of the chromatic scale ap-

pears for the first time, applying again octave equivalence.

The result of this procedure, which we will call overtonal

tuning, leads to frequency ratios of the formm/2n for some

integers m and n as shown in Tab. 1 (c). However, as one

can see, the relative error compared to equal temperament

again is sometimes high.

In the literature (see e.g. [5] and references therein),

other historical and modern tunings are listed, e.g. Kirn-

berger III, see Tab.1 (d). However, they are also only par-

tially useful in this context, because they do not take into

account the fact on just noticeable differences explicitly.

In principle, this also holds for the adaptive tunings in [5],

where simple integer ratios are used and scales are allowed

to vary. An adaptive tuning can be viewed as a generalized

dynamic just intonation, which fits well to musical prac-

tice, because the frequencies for one and the same pitch

category may vary significantly during the performance of

a piece of music. Trained musicians try to intonate e.g. a

perfect fifth with the frequency ratio 3/2, and listeners are

hardly able to distinguish this frequency ratio from others

that are close to the value in equal temperament, namely
12
√
2 7 ≈ 1.498. In consequence, also the rational tuning,

which we introduce now, primarily should not be consid-

ered as a tuning, but more as the basis for intonation and

perception of intervals. We will use the frequency ratios

of the rational tuning, shown in Tab. 1 (e), in our analyses

of harmonicity. They are fractions with smallest possible

denominator, such that the relative error wrt. equal temper-

ament is just below 1%. They can be computed by means

of Farey sequences, i.e. ordered sequences of completely

reduced fractions between 0 and 1 which have denomina-

tors less than or equal to some (small) n, or by continued

fraction expansion.

3.4 Continued Fraction Expansion

In mathematics, a (regular) continued fraction is an expres-

sion as shown in Fig. 3 (a), where the ci are integer num-

bers that must be positive for i > 0. For a given rational or
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interval k (a) equal temperament (b) Pythagorean (c) overtonal (d) Kirnberger III (e) rational

prime, unison 0 1.000 1/1 (0.00%) 1/1 (0.00%) 1/1 (0.00%) 1/1 (0.00%)

minor second 1 1.059 37/211 (0.79%) 17/16 (0.29%) 25/24 (–1.68%) 16/15 (0.68%)

major second 2 1.122 9/8 (0.23%) 9/8 (0.23%) 9/8 (0.23%) 9/8 (0.23%)

minor third 3 1.189 39/214 (1.02%) 19/16 (–0.14%) 6/5 (0.91%) 6/5 (0.91%)

major third 4 1.260 81/64 (0.45%) 5/4 (–0.79%) 5/4 (–0.79%) 5/4 (–0.79%)

perfect fourth 5 1.335 311/217 (1.25%) 21/16 (–1.67%) 4/3 (–0.11%) 4/3 (–0.11%)

tritone 6 1.414 36/29 (0.68%) 23/16 (1.65%) 45/32 (–0.56%) 17/12 (0.17%)

perfect fifth 7 1.498 3/2 (0.11%) 3/2 (0.11%) 3/2 (0.11%) 3/2 (0.11%)

minor sixth 8 1.587 38/212 (0.91%) 25/16 (–1.57%) 25/16 (–1.57%) 8/5 (0.79%)

major sixth 9 1.682 27/16 (0.34%) 27/16 (0.34%) 5/3 (–0.90%) 5/3 (–0.90%)

minor seventh 10 1.782 310/215 (1.14%) 7/4 (–1.78%) 16/9 (–0.23%) 16/9 (–0.23%)

major seventh 11 1.888 243/128 (0.57%) 15/8 (–0.68%) 15/8 (–0.68%) 15/8 (–0.68%)

octave 12 2.000 2/1 (0.00%) 2/1 (0.00%) 2/1 (0.00%) 2/1 (0.00%)

Table 1. Table of relative frequencies for different tunings.

(a) x ≈ c0 +
1

c1 +
1

c2 +
1

c3 +
1

. . .

(b) c0=⌊x⌋ cn=⌊1/xn−1⌋
x0=x− c0 xn=1/xn−1− cn

(c) a−1=1 a0=c0 an+1=an−1 + cn+1an
b−1=0 b0=1 bn+1=bn−1 + cn+1bn

Figure 3. Continued fractions and Euclidean algorithm.

real number x, the values ci can be computed recursively

by the (extended) Euclidean algorithm, stated in Fig. 3 (b),

where the floor function ⌊x⌋ is used, which yields the

largest integer less than or equal to x. The sequence of the

ci induces a sequence of fractions ai/bi, called convergents
or fraction expansion of x, which can be computed by the

equations in Fig. 3 (c). Continued fractions obey many in-

teresting properties (see [8]), for instance:

• Any finite continued fraction represents a rational

number.

• Every convergent ai/bi of a continued fraction is in

its lowest terms, i.e. , ai and bi have no common di-

visors.

• Each convergent is nearer to x than the preceding

convergent and also than any other fraction whose

denominator is less than that of the convergent.

The most important property in this context is the last

one, because it provides a procedure for computing the fre-

quency ratios of the rational tuning as follows. For the k-th

semitone, we consider the fraction expansion of x = 12
√
2 k,

i.e. the frequency ratio in equal temperament, until the rel-

ative error of the convergent y = an/bn wrt. x, i.e. the term
|y/x−1|, is less than 1%.

Continued fractions may help us explain the origin of

the chromatic twelve-tone scale. For this, we look for a

tuning in equal temperament with n tones per octave, such

that the perfect fifth in just intonation (frequency ratio 3/2)
is approximated as good as possible. Thus, we develop

a fraction m/n with 2m/n ≈ 3/2, where m is the number

of the semitone representing the fifth. Hence, we have to

approximate x = log2(3/2) ≈ 0.585. In this case, the se-

quence of convergents is 0/1, 1/1, 1/2, 3/5, 7/12, 24/41,
31/53, . . . , showing m/n= 7/12 as desired, because semi-

tone m = 7 gives the perfect fifth in the chromatic scale

with n = 12 tones per octave.

4. APPLICATION OF THE THEORY

4.1 Comparison of Different Approaches

Let us now apply the periodicity-based theory to com-

mon musical chords and correlate the obtained results with

empirical results. Tab. 2 shows the perceived and com-

puted relative sonority of basic chord classes (cf. Fig. 1).

Tab. 2 (a) shows the ranking for the perceived sonority ac-

cording to empirical experiments reported in [4], which

have been repeated by many others with similar results.

Unfortunately, [4] does not consider the suspended triad.

Therefore, it is not ranked in the table. Tab. 2 (b) provides

the ranking for complex tonalness [2], whose numerical

values are shown in brackets. The model according to [2]

builds on earlier work [9]. However, especially the disso-

nance of the augmented triad is not reflected in this model

by its calculated tonalness: It appears on rank 2, right af-

ter the major triad in root position. Therefore, [2] argues,

that this has cultural rather than sensory origin. Tab. 2 (c)

shows the ranking wrt. instability [6]. The notion of tension

used in this model produces the desired low sonority of

the diminished and the augmented triad (cf. Sect. 2.2). The

correlation with the empirical results is good, but can still

be improved, e.g., the minor triad in root position (rank 2)

scores better than the inversions of the major triad (ranks

4 and 5), which is not as desired.

Tab. 2 (d)–(e) shows the ranking wrt. the harmonic-

ity values h. As one can see, there is almost a one-to-
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chord class (a) empirical [4] (b) tonality [2] (c) instability [6] (d) harmonicity (e) harmonicity∗

major {0,4,7} 1 1 (0.48) 1 (0.624) 2 (4) 2 (4.0)

{0,3,8} 2 6 (0.38) 5 (0.814) 3 (5) 3 (5.0)

{0,5,9} 3 3 (0.43) 4 (0.780) 1 (3) 1 (3.0)

suspended {0,5,7} 8 (1.175) 4 (6) 4 (6.0)

{0,2,7} 11 (1.219) 5 (8) 5 (8.0)

{0,5,10} 9 (1.191) 6 (9) 6 (9.0)

minor {0,3,7} 4 4 (0.42) 2 (0.744) 7 (10) 7 (10.0)

{0,4,9} 5 7 (0.38) 3 (0.756) 8-9 (12) 8 (12.0)

{0,5,8} 6 10 (0.32) 6 (0.838) 10-11 (15) 9 (15.0)

diminished {0,3,6} 7 9 (0.35) 12 (1.431) 13 (60) 13 (26.0)

{0,3,9} 8 5 (0.40) 7 (1.114) 10-11 (15) 10 (16.6)

{0,6,9} 9 8 (0.37) 10 (1.196) 8-9 (12) 12 (19.9)

augmented {0,4,8} 10 2 (0.44) 13 (1.998) 12 (20) 11 (19.7)

Table 2. Ranking relative sonorities of common triads.

one correspondence with the empirical results. The num-

bers in brackets are the respective harmonicity values h

and h∗, where the latter are averaged over all inversions.

For this, we compute the harmonicity of the given chord

(cf. Sect. 3), e.g. the first inversion of the diminished triad

{0,3,9}, that is h0 = lcm(1,5,3) = 15. In addition, we

adopt each tone as reference tone, not only the lowest

tone. Thus, we consider also the chords with the semitones

{−3,0,6} and {−9,−6,0}. For semitones associated with

a negative number n, we take the frequency ratio of semi-

tone 12−n according to Tab. 1 (e) and halve it, i.e., we do

not apply octave equivalence here. Therefore, we get the

frequency ratios {5/6,1/1,17/12} and {3/5,17/24,1/1}
with harmonicity values h1 = 12 and h2 = 120, respec-

tively. Since periodicity of chords is related to the lowest

tone, we multiply the h values by the lowest frequency ra-

tio in the chord, obtaining h′0 = 15, h′1 = 5/6 ·12= 10, and

h′2 = 3/5 ·120= 72. We then average the virtual chord fre-

quencies f1/h, where h appears in the denominator. Hence,

we calculate the harmonic average of all harmonicity val-

ues h′0, h
′
1, and h′2, which yields h∗ ≈ 16.6.

Tab. 2 (a) and (e) differ only in two respects: First, the

most consonant chord according to harmonicity (rank 1)

is the second inversion of the major triad with semitones

{0,5,9} and not the root position. Its calculated harmonic-

ity is h = 3, which however coincides with the fact, that

the second inversion appears before the root position in

the harmonic overtone sequence (cf. Sect. 2.1). Second, the

augmented triad appears late as expected (rank 11 of 13),

but the root position and the second inversion of the dimin-

ished triad appear still later. However, the continued frac-

tion expansion for the tritone (semitone 6, frequency ratio√
2), occurring in both triads, yields first 7/5, which is only

slightly mistuned. This would lead to a significantly lower

h value of the two chords – as desired. Thus, in summary,

the periodicity-based approach on harmony perception fits

best to empirical results.

4.2 Overtones and Periodicity

Harmonic overtone spectra are irrelevant for determining

relative periodicities. The period length of such complex

waveforms is identical with that of its fundamental tone.

We obtain h = 1, since the frequencies of harmonic over-

tones are integer multiples of the fundamental frequency,

hence all frequency ratios {1/1,2/1,3/1, . . .} have 1 as

denominator. Therefore, harmonicity is independent from

concrete amplitudes and phase shifts of the sinusoids of the

pure tone components. This seems plausible, because har-

mony perception only partially depends on loudness and

timbre of the sound. It should not matter much, whether

a chord is played e.g. on guitar, piano, or pipe organ. Of

course, this argument only holds for tones with harmonic

overtone spectra. If we have inharmonic overtones in a

complex tone such as in gamelan music (cf. [5]), then it

holds h > 1 for the harmonicity value of a single tone,

i.e., we have an inherently increased harmonic complexity

(cf. [2]).

4.3 From Chords to Scales

The harmonicity value h can be determined for harmonies,

consisting of far more than three tones, without any com-

putational problems. Thus, let us apply the formulae from

Sect. 3 to general chords and scales. Fig. 4 (a)–(b) shows

harmonies with 5 tones, that have low h values. The pen-

tachord Emaj7/9 with h = 8, classically built from a stack

of thirds, is standard in jazz music. Alternatively, it may

be understood as superposition of the major triads E and

B, which are in a tonic-dominant relationship according to

classical harmony theory. Fig. 4 (b) shows the pentatonic

scale (h = 24), which could alternatively be viewed as the

standard jazz chord E6/9. All harmonies shown in Fig. 4

have low, i.e. good harmonicity values h, ranking among

the top 5% in their tone multiplicity category. This also

holds for the diatonic scale (7 tones, h = 24) and the blues

scale (8 tones, h = 24) in Fig. 4 (c)–(d). Furthermore, ac-

cording to their h∗ value, all church modes, i.e. the diatonic

scale and its inversions, rank among the top 11 of 462 pos-

sible scales with 7 tones. Therefore, the periodicity-based

theory can contribute significantly to the discussion about

the origin of scales of western music. There are other math-

ematical explanations for the origin of scales, e.g. by group

theory [10], ignoring however the sensory psychophysical
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Figure 4. Harmonies (scales) with more than three tones.

basis for the musical importance of the perfect fifth.

5. CONCLUSIONS

As we have seen in this paper, harmony perception can

be explained well by considering relative periodicities of

chords, that can be computed from the frequency ratios of

the intervals in the chord. The approach shows a good cor-

relation to empirical studies on perceived sonority. Even

the origin of scales can be described with this approach.

It is mathematically simple, employing Farey sequences

or the Euclidean algorithm for computing continued frac-

tions. The approach has a strong psychophysically basis. It

takes into account that human pitch perception is limited

by a just noticeable difference of about 1% and assumes

that virtual pitch of chords (chord periodicity) can be de-

tected. The latter is indeed possible, as results from neuro-

science prove, which we briefly review now.

5.1 Periodicity and Neuro-Science

From a spectral point of view, sounds are combinations of

a fundamental frequency and certain overtones. Spectral

analysis is performed in the cochlea. When a pure tone is

detected, waves travel along the basilar membrane, which

the cochlea houses, reaching a maximum amplitude at a

point depending on the frequency of the tone [1–3]. Thus,

the ear works as a spectral analyzer. This function of the ear

is used in the explanations of harmony perception, based

on overtones or dissonance (Sect. 2).

Periodicity-based explanations use missing fundamen-

tal tones, i.e. tones that are physically not present and

hence cannot perceived by the ear directly. It has been

well-known for years that periodicity can be detected in

the brain. For example, two pure tones forming a mistuned

octave cause so-called second-order beats, although no ex-

act octave is present [3]. Recently, neuro-science found the

mechanism for being able to perceive periodicity. As a re-

sult of a combined frequency-time analysis, i.e. some kind

of auto-correlation by comb-filtering, pitch and timbre are

mapped temporally and also spatially and orthogonally to

each other in the auditory midbrain and auditory cortex [1]

(see also [11]). [12] reviews neuro-physiological evidence

for interspike interval-based representations for pitch and

timbre in the auditory nerve and cochlear nucleus. Tim-

ings of discharges in auditory nerve fibers reflect the time

structure of acoustic waveforms, such that the interspike

intervals (i.e. the period lengths) that are produced convey

information concerning stimulus periodicities, that are still

present in short-term memory [1].

5.2 Summary and Open Questions

From the good correlation of the periodicity-based theory

with the empirical results presented here, one may con-

clude, that there is a strong psychophysical basis for har-

mony perception and the origin of musical scales. As un-

derlying principle for this, periodicity detection turns out

to be more important than spectral analysis, although cul-

tural and other aspects certainly must not be neglected. The

question, how different harmonies cause different emo-

tions or subjective effects like happiness or sadness is not

yet answered by this, of course.
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