
10th International Society for Music Information Retrieval Conference (ISMIR 2009)

CHRONICLE: REPRESENTATION OF COMPLEX TIME STRUCTURES

Wijnand Schepens
University College Ghent, Belgium

wijnand.schepens@hogent.be

ABSTRACT

Chronicle is a novel open source system for represent-
ing structured data involving time, such as music.

It offers an XML-based file format, object models for
internal representation in various programming languages,
and software libraries and tools for reading and writing
XML and for data transformations.

Chronicle defines basic blocks for representing time-
based information using events, a hierarchy of groups and
instantiable templates. It supports two modes of timing:
local timing within a group and association with other el-
ements. The built-in mechanism for resolving time refer-
ences can be used to implement both timescale mappings
and tagging of information.

Chronicle aims to be a powerful and flexible founda-
tion on which new file formats and software can be built.
Chronicle focuses on structure and timing, but leaves the
actual content free to choose. Thus format- or software-
developers can specify their own domain-model. This makes
it possible to make representations for different types of
musical information (scores, performance data, ...) in dif-
ferent styles or cultures (CMN, non-western, contempo-
rary, ...), but also for other domains like choreography,
scheduling, task management, and so on. It is also ideal
for structured tagging of audio and multimedia (movie sub-
titles, karaoke, synchronisation, ...) and for representing
”internal” data used in music algorithms.

The system is organized in four levels of increasing com-
plexity. Software developed for a specific level and domain
will also accept lower level data, while users can choose to
represent data in a higher level and use Chronicle tools to
reduce the level.

1. INTRODUCTION

Since the beginning of computing hundreds of music en-
codings (representations, formats) have been invented, and
new ones are still being developed today. For overviews
see e.g. [1–3]. Part of the reason is that the landscape of
forms of musical information is so large, ranging from au-
dio to symbolic, from performance to score, from western
to non-western, from classical to popular, from ancient to

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.

contemporary. Some of these terrains are relatively well
established, even standardized, others are still being ex-
plored.

Most symbolic music encodings focus on common west-
ern music notation (CWMN). However, many new appli-
cations are pushing the limits of conventional encodings.
Some examples:

• non common western music, e.g. traditional African
music, medieval music

• special notations such as percussion notations, tab-
lature, Gregorian plainchant

• extra data such as lyrics, choreography, instrument-
specific notations, harmony. Also: auxiliary data for
music software, e.g. chroma vectors, onset times, ...

• synchronization or alignment with multimedia, an-
notations and labeling

Existing encodings are not always suitable to accommo-
date the storage of these types of data. Developers are
forced to invent their own encoding, or to abuse existing
encodings such as MIDI [1].

The most important common factors in these applica-
tions are time and structure. We have developed a new sys-
tem for dealing with structured data involving time, called
Chronicle. The system deals with time and structure, but
leaves the actual content or data free to choose. A devel-
oper has the freedom to represent the content in any form
he wishes. Thus the Chronicle system can serve as the
skeleton for a variety of applications, allowing the devel-
oper to concentrate on content-specific issues.

In the early 90s, one of the first systems dealing with
time was HyTime [4] on which the symbolic music encod-
ing SMDL [5] was based. Although both are international
ISO/IEC standards, and have had a lot of influence on later
initiatives, they have never been used in practice. There
are a number of reasons for this, but the main reason is
probably that the system was far too complex. Chronicle
is similar in some aspects, but aims to be as simple as pos-
sible. Related efforts for symbolic music can be seen in
Music Space [6] and SMI [7] or IEEE 1599 [8].

Similar time-based approaches can be found in the field
of multimedia, notably with SMIL [9] and its recent off-
spring Timesheets [10]. For a more theoretical background
please refer to [11]. These systems were designed to sched-
ule multimedia presentations. The use of parallel and se-
quential groups of elements (sound, image, movie) can

267



Poster Session 2

also be found in Chronicle, but Chronicle offers much more
advanced mechanisms for annotations, timescale mappings,
templates etc.

Chronicle is intended to aid developers of (music) soft-
ware and file formats, by providing simple yet powerful
and flexible basic building blocks and structuring mecha-
nisms. It offers support for working with events, groups,
relative time, parallel and sequential layout, timescales,
timescale mappings, association, parametrized templates
and more. The system was developed primarily for sym-
bolic music, but is also applicable in other domains like
audio, multimedia, choreography, job scheduling etc.

The Chronicle system consists of different parts:

• external representation: XML-based file format

• software tools for manipulating Chronicle XML files

• internal representations: object models (interfaces,
classes, ...)

• software libraries for manipulating, storing, parsing...

Internal representations and libraries are developed in var-
ious programming languages 1 .

The main aim is to facilitate the development of new
domain-specific encodings and software by providing in-
ternal data representations (in the form of interfaces and
classes) and software-libraries for various tasks such as
writing and parsing XML, processing events, manipulat-
ing structure, querying information etc.

2. DESIGN

2.1 Elements and ID’s

The basic elements are events and groups. A group con-
tains child-elements, which are either events or sub-groups.
Sub-groups contain other elements and so on. The root-
group is the common ancestor of all elements. The result is
a hierarchy or tree-structure, comparable to a file system.
Every element in the tree, except the root, has a parent
group.

Every element is identified within its parent group by a
unique integer number called local ID. By default elements
are numbered 0, 1, 2, ..., but it is possible to override this
by an explicit ID-definition.

Every element in the hierarchy is uniquely identified by
its local ID, the local ID of its parent group, the local ID
of its grandparent group etc. This sequence of local IDs is
called the elements global ID.

It is convenient to introduce path-notation, where a global
ID is specified by concatenating the local IDs top-down
(starting from the root) separated by slashes, similar to a
file path or URL. The root itself is notated by /. Thus, for
example, global ID /2/3 identifies the element with local
ID 3 in the sub-group with local ID 2 in the root group.
Optionally, an element can have a name (String) which is
also unique within its parent group. Names can be used to
embellish path-notation, e.g. /part1/section3/4.

1 currently Java and ActionScript

Path expressions starting with / are called absolute, be-
cause they identify an element starting from the root. It
is also possible to identify elements using a relative ID
from within another element. As in a file-path, one can
use ”..” in path-notation to indicate the parent (group). For
example ../../section/2 refers to the element with
local ID 2 in a group named ”section” in the grandparent
group of the current element. As an alternative, the no-
tation @name can be used to refer to an element named
name anywhere up in the hierarchy. First the parent group
is searched. If the element is not found there, the grand-
parent is searched, and so on, until the root is reached.
This mechanism is similar to the lookup of variable names
in nested scopes. For example, @section/2 is equiva-
lent to ../../section/2 if the grandparent contains a
child named ”section”, but the parent doesn’t.

2.2 Time

All elements have a timestamp, which is expressed either
in local time or in non-local time.

Local time is represented by an integer number and is to
be interpreted relative to the timescale of the parent group.
The parent group has its own (start-)time and, optionally, a
scale. An example in XML-form:

<group time="100" scale="4">
<event time="10" />

</group>

In this fragment the ”absolute” time of the event would
be 100+4×10 = 140. If an element’s time is not specified,
it defaults to zero (local time). The scale defaults to one.

Alternatively, an element can specify its timestamp in
non-local time using a time reference. A time reference
is represented by a path-expression, either absolute or rela-
tive, which can be written using path-notation starting with
/, .. or @. If this path refers to an element which exists
in the tree, then the referring element gets the same time as
the element it refers to.

<event name="e1" time="100" />
...
<group>
<event name="e2" time="@e1" />

</group>

In this example event ”e2” refers to event ”e1”, so it also
has time 100. Here we used @e1 in the path expression.
Equivalently, one could specify this using a relative path
../e1 or an absolute path.

Time references can also be chained (refer to a refer-
ence...) and mixed with local timing:

<group name="e1" time="100" />
<event time="10" />
<event time="20" />

</group>
...
<group time="@e1/0">
<event name="e2" time="1" />

</group>

Here event ”e2” uses local time, which is added to the
parent group time, resulting in @e1/1. This path refers to

268



10th International Society for Music Information Retrieval Conference (ISMIR 2009)

the second element (id=1) of the group ”e1”. The result is
that the time of event ”e2” resolves to 100 + 20 = 120.

The technique of time references is very powerful. It
can be used for associating elements with other elements
(tagging...), but also to implement mappings between time-
scales. This will be illustrated in section 3.

Chronicle also supports layout-schemes which allows
automatic determination of element times. The most com-
mon examples are sequential and parallel layout which sched-
ule elements resp. one after the other and at the same time.

2.3 Levels

Chronicle is organized in four levels of increasing com-
plexity.

A level 0 file consists of one list of events. There is one
global timescale. All events use local time relative to this
timescale. The events are ordered in ascending time order:
every event must have a time greater than or equal to that
of its predecessor. No restrictions are imposed on the data
carried by the events.

Level 1 adds the possibility of groups and nesting, with
the restriction that groups have starting time equal to zero.
This means that local times in groups are equivalent to ”ab-
solute” times in the global timescale. In this (and higher)
levels, the events needn’t be ordered in time.

In level 2 all elements, including groups, can specify
their (start) time as a local time or using a time reference,
and groups can use a layout-scheme to set child element
times.

Finally, level 3 introduces templates and template in-
stances. Note that every level is a subset of the higher lev-
els. Chronicle provides tools to transform data to a lower
level.

2.4 Domain

As noted in the introduction the Chronicle system only
deals with structure and timing, not with the actual domain-
specific content, which can be chosen freely. Different
Chronicle applications can be developed for specific do-
mains representing different types of musical information
(scores, performance data, ...) in different styles or cultures
(CMN, non-western, contemporary, ...), but also for other
domains like choreography, scheduling, task management,
and so on. It is also ideal for structured tagging of audio
and multimedia (movie subtitles, karaoke, synchronisation
of score and audio, ...) and for representing ”internal” data
used in music algorithms (chroma, coordinates, ...)

In the XML-format domain-specific information is en-
coded in the content of event-elements, either as text or as
one or more child elements. Additionally it is possible to
give the event an attribute type. To illustrate this we show
some possibilities for encoding a chord-symbol:

<event>Am7</event>
<event type="chord">Am7</event>
<event><chord>Am7</chord></event>
<event>
<chord><root>A</root><kind>m7</kind></chord>

</event>

We have provided API’s to read and write Chronicle el-
ements (event, group, ...), but it is up to the user to deal
with event-content. Groups cannot carry data themselves,
although it is possible to specify a group-type using the
type-attribute. If necessary, extra events can be intro-
duced in a group to encode group-related information.

3. EXAMPLE

We will demonstrate the key features of the Chronicle sys-
tem and the level reduction process by means of an ex-
ample. We present the material in XML-form, although
it should be borne in mind that Chronicle also supports
”internal” representations and transformations in different
programming languages.

<chronicle version="2.0" level="3"
domain="http://.../leadsheet" />

<template name="note" >
<group>
<event time="0">
<note_on pitch="#pitch" />

</event>
<event time="#dur">
<note_off pitch="#pitch" >

</event>
</group>

</template>

<template name="voice">
<group>
<group name="notes" layout="sequential">
<instance model="/note"

pitch="D4" dur="12" />
<instance model="/note"

pitch="D4" dur="12" />
<instance model="/note"

pitch="D4" dur="9" />
<instance model="/note"

pitch="E4" dur="3" />
<instance model="/note"

pitch="F#4" dur="12" />
... MORE NOTES ...

</group>
<group type="lyrics" time="@notes/0">
<event time="0" type="lyric">Row,</event>
<event time="1" type="lyric">row,</event>
<event time="2" type="lyric">row</event>
<event time="3" type="lyric">your</event>
<event time="4" type="lyric">boat</event>
... MORE LYRICS ...

</group>
</group>

</template>

<group name="song" time="@ticks/0">
<group name="canon" layout="sequential">
<group time="0" name="first">
<instance model="/voice" />

</group>
<group time="48" name="second">
<instance model="/voice" />

</group>
<group time="96" name="third">
<instance model="/voice" />

</group>
<group time="144" name="fourth">
<instance model="/voice" >

</group>
</group>
<instance name="unison" model="/voice">

</group>

<group name="ticks" time="@ms/0" >

269



Poster Session 2

<event id="0" time="0" />
<event id="192" time="19200" />
<event id="240" time="21600" />

</group>

</chronicle>

This example illustrates an encoding of the song ”Row,
row, row your boat”. It is important to note that this is only
one of many possible encodings.

After the XML-preamble, the file starts with a root-
element chronicle. The attribute version specifies
the version of the Chronicle system itself. The attribute
level indicates the encoding level used, and the attribute
domain specifies the domain (content types and structural
restrictions). In this case the attribute points to a URI.

The first element defines a template note. A template
is a kind of prototype which can be instantiated (copied)
multiple times. Templates are useful for avoiding code-
duplication. A template can have parameters, which makes
it possible to vary the instances. In this case the note-
template is used as a convenient way to bundle a note-on
and note-off event. It represents a single note with a certain
pitch and duration. The pitch is encoded as a simple string
which indicates pitch class (e.g. F#) and register or octave
(4th octave). This is not dictated by Chronicle but is a
choice made by the domain-developer.

Next, the template voice defines notes and lyrics of
the song. The group song instantiates five copies at dif-
ferent times, representing four voices sung in canon, fol-
lowed by one in unison. Finally, group ticks relates the
ticks-timescale to milliseconds.

The example is a level-3 encoding. We will now illus-
trate how it can be reduced to lower levels.

The first phase, which transforms from level-3 to level-
2, is template instantiation, also called expansion. It is car-
ried out bottom-up: first the innermost elements, then their
parents and so on. In this case, the voice-template con-
tains instances of note-templates which are instantiated ex-
panded first, the parameters #pitch and #dur being sub-
stituted by their actual values defined in attributes pitch
and dur. Subsequently, the four voice-instances in the
song-group are expanded. Since this template has no pa-
rameter, the instances are exact copies. In the resulting
level-2 file the templates have disappeared:

<chronicle version="2.0" level="2"
domain="http://.../leadsheet" />

<group name="song" time="@ticks/0">
<group time="0" name="first">
...

</group>
<group time="48" name="second">
<group>
<group name="notes" layout="sequential">

<group>
<event time="0">
<note_on pitch="D4" />

</event>
<event time="12">
<note_off pitch="D4" />

</event>
</group>
... MORE NOTES ...

<group>
<event time="0">
<note_on pitch="E4" />

</event>
<event time="3">
<note_off pitch="E4" />

</event>
</group>
... MORE NOTES ...

</group>
<group type="lyrics" time="@notes/0">
<event time="0" type="lyric">Row,</event>
<event time="1" type="lyric">row,</event>
<event time="2" type="lyric">row</event>
<event time="3" type="lyric">your</event>
<event time="4" type="lyric">boat</event>
... MORE LYRICS ...

</group>
</group>

</group>
... THIRD AND FOURTH VOICE ...

</group>

<group name="ticks" time="@ms/0" >
<event id="0" time="0" />
<event id="192" time="19200" />
<event id="240" time="21600" />

</group>

</chronicle>

Reduction from level-2 to level-1 is carried out in two
phases. The first phase is the layout phase. In the example,
the notes-group has sequential layout, which means that
its elements must be scheduled one after the other. Techni-
cally, the (start) time of element i + 1 is equal to the (start)
time of element i plus the duration of element i, for all i.

The duration of a group is equal to the largest local time
of (grand)child events. If necessary the duration can also
be specified explicitly. In the case of the notes, the duration
of a note-group is equal to the time of the offset-event.

In the resulting file the element groups have acquired
an explicit time, and the layout-indications are gone. In
the example, the note-groups have times 0, 0 + 12 = 12,
12 + 12 = 24, 24 + 9 = 33, 33 + 3 = 36 and so on.
This is illustrated in the following fragment which shows
the onset-event of the fourth note (E4) in the second voice,
and its ancestor groups:

<group name="song" time="@ticks/0">
<group time="48">
<group>
<group name="notes">

...
<group time="33">
<event time="0">
<note_on pitch="E4" />

</event>

The layout phase is followed by the time resolution phase.
The timestamps of all elements are resolved in the manner
illustrated in section 2.2.

Consider for example the onset of the fourth note (E4)
in the fragment above. Following the way up from parent
to parent, it can be seen that the additions result in a time
equal to @ticks/81. This means that that note starts on
tick 81.

The domain-developer has chosen to encode the lyrics
in a separate group which is associated with the notes-

270



10th International Society for Music Information Retrieval Conference (ISMIR 2009)

group. In the group lyrics the event times are added
to the group-time, yielding value @notes/0, @notes/1
and so on. The @notes-reference points to the notes-
group. Therefore the timestamps of the lyric-events are
substituted by the timestamps of the note-groups which
they refer to, in this case @ticks/0, @ticks/12 and
so on.

The reference @ticks in turn points to the ticks-
group defined near the end of the example. As this group
contains only three events with local ID 0, 192 and 240,
a reference like /ticks/12 doesn’t point to a real el-
ement. Such a reference is called virtual. In that case
times are resolved by a linear interpolation between real
elements. In the example ID 0 maps to time 0 and ID 192
maps to 19200, so each tick in this range has a duration of
100 ms. This means, for instance, that @ticks/12 re-
solves to @ms/1200 which signifies that tick 12 occurs
after 1200 milliseconds. Ticks in the range up to 240 have
a duration equal to (21600−19200)/(240−192) = 50 ms.
As a result, the fifth instance of the voice-template (named
”unison”) is played in double tempo.

The net effect is that the ticks-group defines a map-
ping between timescales. Note that the mechanism for re-
solving (local or non-local) times is used to accomplish
two different goals: a. the lyrics are associated (tagged) to
notes, b. the ticks timescale is mapped to the millesecond
timescale.

Note that all references can be resolved to a form ms/x
where x is an integer number. The reference @ms/...
cannot be resolved any further - this is the ”global” timescale.
If we set all group times to zero, then the absolute times are
equivalent to relative times. The result is a level-1 file, with
the timescale ms specified in the root-element:

<chronicle version="2.0" level="1"
domain="http://.../leadsheet"
timescale="ms" />

<group name="song">
<group name="first">
...

</group>
<group name="second">
<group >
<group name="notes" >

<group>
<event time="4800">
<note_on pitch="D4" />

</event>
<event time="6000">
<note_off pitch="D4" />

</event>
</group>

...
... MORE NOTES ...
<group>
<event time="8100">
<note_on pitch="E4" />

</event>
<event time="8400">
<note_off pitch="E4" />

</event>
</group>

...
... MORE NOTES ...

</group>
<group type="lyrics" >

<event time="4800" type="lyric">

Row, </event>
<event time="6000" type="lyric">

row, </event>
<event time="7200" type="lyric">

row </event>
<event time="8100" type="lyric">

your </event>
<event time="8400" type="lyric">

boat </event>
...

... MORE LYRICS ...
</group>

</group>
</group>
...
... THIRD AND FOURTH VOICE ...

</group>
...
... TICKS ...
</chronicle>

To reduce from level-1 to level-0 one more transforma-
tion is needed. In this final phase groups are serialized or
flattened into one long series of events, and they are or-
dered in ascending time order. In the resulting level-0 file,
there are no more groups:

<chronicle version="2.0" level="0"
domain="http://.../leadsheet"
timescale="ms" />

...
<event time="4800">
<note_on pitch="D4" />

</event>
<event time="4800" type="lyric">Row,</event>
<event time="6000">
<note_off pitch="D4" />

</event>
...
<event time="8100">
<note_on pitch="E4" />

</event>
<event time="8100" type="lyric">your</event>
<event time="8400">
<note_off pitch="E4" />

</event>
...
</chronicle>

4. IN PRACTICE

How can the Chronicle system be used in practice?
The XML-format can be used by software-developers

as a convenient means to persist data. Chronicle provides
easy-to-use libraries for writing and reading the XML-for-
mat. For new software projects it may even be advisable
to use the Chronicle classes and interfaces as the basis for
the object model, even if XML-persistence is not needed.
It is up to the developer to specify the domain-model by
constraining content types and level.

Consider, for example, a Chronicle-encoding of MIDI-
information (see e.g. [1]) By its very nature, this applica-
tion is ideal for a level-0 encoding, i.e. a flat list of simple
events. The domain model establishes event-types (note-
on, note-off, control change, program change) and their
XML-encoding. A typical event could look like this:

<event time="196">
<note_on key="100" velocity="127" channel="0">

</event>

271



Poster Session 2

Software applications operating on this data, for exam-
ple for playing the music, typically process the events one
by one. Whereas the processing software is happy to con-
sume level-0 data, from a musical point of view it may
be desirable to add some structure. This can be achieved
by encoding in a higher level, using mechanisms such as
grouping, association, sequences, templates etc. Chronicle
tools can then be used to transform to level-0 and feed the
reduced data to the processing software.

The nice thing is that users can choose the organiza-
tion which best suits their needs. For example, one might
choose a ”part-by-part” organization using parallel groups
for different instrument parts, or a ”frame-by-frame” or-
ganization using a sequence of parallel note-groups. One
can choose to use sequential groups for measures, for sec-
tions (movements). It is also possible to play around with
associations, timescales and time-mappings, and so on.

One important point which hasn’t been addressed is that
Chronicle files can be embedded as subgroups within an-
other chronicle file using an include-element. The mech-
anism of association by time-references can be used to add
information to a group without changing it. This is espe-
cially useful if the target is an embedded group, or if it is
external data such as an audio or multimedia file.

Chronicle is currently being tested for the encoding of
leadsheets for wikifonia.org. In the near future, we are
planning to create more domain-specific applications, and
hope that other developers will do the same.

Documentation, tools and open source code can be found
at http://code.google.com/p/chronicle-xml/.

5. REFERENCES

[1] E. Selfridge-Field: Beyond MIDI: The Handbook of
Musical Codes, MIT Press, Cambridge MA, 1997.

[2] K. Ng, and P. Nesi: Interactive Multimedia Music
Technologies, Information Science Publishing, 2007.

[3] R. Cover: “XML and Music,” retrieved July 6, 2009
from http://xml.coverpages.org/xmlMusic.html, 2006

[4] C. Goldfarb: Standards: “HyTime: A standard for
structured hypermedia interchange,” IEEE Computer
magazine, 24(8), 1991.

[5] D. Sloan: “Aspects of Music Representation in Hy-
Time SMDL.,” Computer Music Journal, 17, 51-59,
1993.

[6] J. Steyn: “Introducing Music Space,” Proceedings of
the 4th Open Workshop of MUSICNETWORK: Integra-
tion of Music in Multimedia Applications, Barcelona,
2004.

[7] G. Haus, and M. Longari: “A multi-layered, time-
based music description approach based on XML,”
Computer Music Journal, 29, 70-85, 2005.

[8] L. Lucidovo: IEEE 1599: “a Multi-layer Approach
to Music Description,” Journal of Multimedia, 4(1),
2009.

[9] D. Bulterman, J. Jansen, et al.: “Synchronized Mul-
timedia Integration Language (SMIL 3.0),” retrieved
July 6, 2009, from http://www.w3.org/TR/2008/REC-
SMIL3-20081201/, 2008.

[10] P. Vuorimaa, D. Bulterman, and P. Cesar: “SMIL
Timesheets 1.0 - W3C Working Draft,” retrieved
July 6, 2009, from http://www.w3.org/TR/2008/WD-
timesheets-20080110/, 2008.

[11] S. Boll, U. Klas, and W. Westermann: “A Com-
parison of Multimedia Document Models Concerning
Advanced Requirements,” Technical Report Ulmer
Informatik-Berichte No 99-01, 1999.

272


