
10th International Society for Music Information Retrieval Conference (ISMIR 2009)

EFFICIENT ACOUSTIC FEATURE EXTRACTION FOR MUSIC
INFORMATION RETRIEVAL USING PROGRAMMABLE GATE ARRAYS

Erik M. Schmidt
MET-lab, Drexel University
eschmidt@drexel.edu

Kris West
IMIRSEL, University of Illinois
kris.west@gmail.com

Youngmoo E. Kim
MET-lab, Drexel University
ykim@drexel.edu

ABSTRACT

Many of the recent advances in music information retrieval
from audio signals have been data-driven, i.e., resulting
from the analysis of very large data sets. Widespread per-
formance evaluations on common data sets, such as the
annual MIREX events, have also been instrumental in ad-
vancing the field. These endeavors incur a large computa-
tional cost, and could potentially benefit greatly from more
rapid calculation of acoustic features. Traditional, cluster-
based solutions for large-scale feature extraction are ex-
pensive and space- and power-inefficient. Using the mas-
sively parallel architecture of the field programmable gate
array (FPGA), it is possible to design an application spe-
cific chip rivaling the speed of a cluster for large-scale
acoustic feature computation at lower cost. Recent ad-
vances in development tools, such as the Xilinx Blockset in
Simulink, allow rapid prototyping, simulation, and imple-
mentation on actual hardware. Such devices also show po-
tential for the implementation of MIR systems on embed-
ded devices such as cell phones and PDAs where hardware
acceleration would be an absolute necessity. We present a
prototype library for acoustic feature calculation for imple-
mentation on Xilinx FPGA hardware. Furthermore, using
a genre classification task we compare the performance of
simulated hardware features to those computed using stan-
dard methods, demonstrating a nearly negligible drop in
classification performance with the potential for large re-
ductions in computation time.

1. INTRODUCTION

The extraction of appropriate acoustic features is the first
step for nearly all audio-based music information retrieval
applications. Many recent advances in MIR systems are
the result of large-scale, data-driven analysis of audio sam-
ples. Such corpora may contain thousands (or even mil-
lions, in the case of some commercial databases) of audio
files, and the accompanying analyses of these data sets de-
mands vast computational resources. In seeking improved
methods for music classification and understanding, resear-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.

chers are constantly searching for more informative feature
sets, which requires the ability to rapidly prototype and
evaluate new features on very large databases. Addition-
ally, performance evaluations, such as the annual MIREX
events [1], of multiple approaches to specific application
tasks on common data sets have proven to be invaluable
for advancing the state-of-the-art in MIR research. These
evaluations, however, are increasingly difficult to adminis-
ter, since both the number of participants and the size of
the data sets continues to grow annually.

The most common solution to problems having such
computational demands involves an investment in comput-
ing clusters, which are expensive and inefficient (in terms
of both their utilization of hardware resources and energy
consumed). Using the massively parallel architecture of
the field programmable gate array (FPGA) it is possible to
achieve parallel processing on a scale similar to that of a
small cluster (for specific applications) on a single chip.
Current tools such as the Xilinx System Generator (XSG)
for DSP 1 enable rapid prototyping of DSP algorithms in
the graphical language of Simulink with the ability to in-
corporate hardware in the modeling and design loop. Ad-
ditionally, any algorithm built using the Simulink Xilinx
Blockset can be easily compiled into Verilog or VHDL
code and incorporated into a larger hardware system de-
sign. One possible implementation would be MIR on em-
bedded, mobile devices, such as cell phones and PDAs,
where the computation of acoustic features would not be
possible using the onboard CPU. Such a hardware accel-
eration system could be designed both for the computation
of acoustic features, and evaluation of the decision func-
tion of a pre-trained classifier.

We have developed an acoustic feature extraction li-
brary, implemented using XSG, that can be synthesized
directly on supported FPGA hardware. The library sup-
ports the calculation of both Mel-Frequency Cepstral Coef-
ficients (MFCC) [2] and common Statistical Spectrum De-
scriptors (SSDs). Here, we present preliminary classifica-
tion results using fixed-point MFCC features calculated by
the XSG (simulating an FPGA implementation). The accu-
racy of these features is verified through their use in a genre
classification task on a medium-sized audio database, and
we demonstrate that the resulting classification performance
is comparable to that of a floating-point MATLAB and
double-precision Java implementation of similar feature cal-

1 Xilinx System Generator: http://www.xilinx.com/ise/
optional_prod/system_generator.htm

273

Poster Session 2

culation algorithms.

Furthermore, we also present a process for migrating
acoustic features designed using MATLAB to the Xilinx
System Generator in Simulink. The ultimate goal of this
endeavor is to develop a system in which features can be
rapidly and easily prototyped within Simulink, synthesized
to Verilog hardware description language (HDL), and em-
bedded into a larger standalone FPGA-based system-on-
chip design. Tools developed for such a platform could be
easily shared between members of the MIR research com-
munity and could potentially allow even an inexperienced
HDL programmer to take advantage of the performance
gained from implementing feature extraction in hardware.

2. BACKGROUND

Early efforts at implementing acoustic feature computation
in hardware required systems built entirely from scratch,
which is a significant and time-consuming endeavor when
working directly with low-level hardware descriptor lan-
guages (HDLs). Prior work has almost exclusively targeted
MFCC feature calculation for automatic speech recogni-
tion. For example, [3] presents an optimized algorithm
for efficient computation of MFCCs using an FPGA im-
plementation, while [4] focuses on implementing only the
FFT sub-calculation in hardware for eventual use in MFCC
computation. In the direction of easing the dependence
on hardware arithmetic units, [5] proposes modifying the
MFCC algorithm from a triangular filterbank to a mel-
spaced rectangular filterbank, and their results demonstrate
only a minimal decrease in classification accuracy. Other
work has focused on full hardware system integration for
speech recognition. In [6] an on-chip, retrainable hardware
speech recognition system is presented using MFCC fea-
tures and Hidden Markov Models (HMMs) for statistical
pattern recognition.

The annual Music Information Retrieval Evaluation eX-
change (MIREX) tasks, initiated in 2005, have become a
core component of the field of MIR in terms of advanc-
ing and disseminating the latest research and results. With
the number of tasks, participants, and data sets increasing
annually, the evaluations have become exponentially more
difficult to administer. The International Music Informa-
tion Retrieval Systems Evaluation Laboratory (IMIRSEL),
the organizers of MIREX, has traditionally gone above and
beyond in order to accommodate a wide range of imple-
mentation platforms and architectures and retains a range
of machines, including an ever-expanding cluster, for this
purpose, resulting in additional complexity. This configu-
ration, while offering a great deal of flexibility, limits their
ability to take advantage of parallel processing implemen-
tations, which are still highly platform-specific. A 72-hour
runtime cap is enforced for all submissions, but even so, re-
cent evaluations have required up-to 1000 person-hours of
effort. A significant speedup in feature computation could
greatly reduce the runtime requirements for MIREX.

3. HARDWARE IMPLEMENTATION OF
FEATURES

The Xilinx System Generator (XSG) tools in Simulink en-
able the prototyping of complex signal processing algo-
rithms for hardware implementation in a relatively straight-
forward manner. For our initial implementation, we lim-
ited ourselves to analysis windows with a length of 512
samples and 50% overlap, 40 triangular mel-filters, and 20
DCT coefficients. These parameters were chosen because
of their wide application in audio and music processing al-
gorithms. Other research has shown that the number of
filters and DCT coefficients can be greatly reduced while
still maintaining adequate performance [7].

MATLAB Simulink
(Xilinx Blockset)

Xilinx System
Generator

Hardware
Deployment

Figure 1. Implementation flowchart for audio feature ex-
traction algorithms.

The first processing stage for our audio features requires
a DFT calculation, which is performed using the pipelined
Xilinx core FFT v5.0, producing real-time serial FFT data.
Next, using two multipliers, we square the results of the
real and imaginary parts and add them together to obtain
the energy spectral density (ESD), which is quantized to
32-bits. In this case, ESD is preferred to the magnitude
FFT because the square root function necessary to obtain
magnitude is not easily implemented in hardware. XSG in-
cludes Coordinate Rotation Digital Computer (CORDIC)
algorithms which can compute square roots as well as trig-
onometric, logarithmic, and division functions using only
addition, subtraction, bitshift, and table lookup, but in a
practical design these algorithms tend to take up large ar-
eas of the FPGA fabric and often incur large delays. In
general, we avoided the use of these functions whenever
possible.

Cm

Fm

Rm

Spectral
Centroid
Spectral

Flux
Spectral
Rolloff

Mm,cDCT

log(•)

Mel
Filterbank

Audio
Segmentm

Xi
lin

x
Co

re
 F

FT
:

X m

ES
D:

 R
e{

X m
}2

+
Im

{X
m

}2

Figure 2. Hardware implementation of audio feature com-
putation.

274

10th International Society for Music Information Retrieval Conference (ISMIR 2009)

3.1 Mel-Frequency Cepstral Coefficients

3.1.1 Algorithm

Mel-frequency cepstral coefficients (MFCCs) are among
the most widely used acoustic features in speech and audio
processing. MFCCs are essentially a low-dimensional rep-
resentation of the spectrum warped according to the mel-
scale, which reflects the nonlinear frequency sensitivity of
the human auditory system [2]. In our implementation,
MFCCs are defined as

Mm,c =
40∑

b=1

X̂m,b cos
[
c

(
b− 1

2

)
π

40

]
, c = 1, 2, ..., 20

(1)

X̂m,b = log

(
fb[k]

∣∣∣∣∣
N−1∑
n=0

xm[n]e−j 2πnk
N

∣∣∣∣∣
)
, (2)

where m represents the current frame. Normally, MFCCs
are implemented over short-time segments, and accord-
ingly our implementation divides the audio into overlap-
ping segments and applies a Hanning window function to
reduce edge effects. The Discrete Fourier Transform (DFT)
of each short-time segment is computed using the FFT
algorithm. The magnitude of the frequency components
is determined and fb[k], the mel-spaced triangular filters
(Figure 3), are applied via multiplication in the frequency
domain. Continuing with the cepstrum calculation, the log
of the mel-filtered energies is calculated (X̂m,b), which to
some extent, serves to deconvolve the audio by transform-
ing multiplications in the frequency-domain (and thus, con-
volutions in the time-domain) into additions. As a final
step, the inverse DFT is applied to X̂m,b using the DCT
(sine components are not needed since the input is guaran-
teed to be real and even). This step is also used to reduce
the dimensionality of the data to the desired quantity, and
it has been shown that the DCT has the additional effect of
decorrelating the vector of feature components [8].

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.005

0.01

0.015
Mel−spaced Triangular Filters

A
m

pl
itu

de

Frequency (Hz)

Figure 3. 40-band mel-warped triangular filterbank

3.1.2 FPGA Implementation

Calculation of the MFCC features consists of applying the
mel-filterbank to the spectrum, taking the log, and com-
puting the DCT. Applying the mel-filterbank requires 40
read-only memory (ROM) elements, 40 multipliers, and
40 accumulators. A control register is placed on the out-
put which is triggered by FFT completion to only allow
the filterbank output to change once for every frame. To

minimize the size of the ROM elements and the number of
multiplies, the mel-filter coefficients are restricted to 16-
bits. This stage is the most resource intensive part of the
design due to the number of multipliers required.

Once the data is filtered, it is again serialized in order
to compute the log. This requires a wait of 512 samples
until the next FFT frame is supplied, therefore ample time
is available to serialize the 40 filter band values. Using a
single CORDIC log, all 40 values are computed and sub-
sequently quantized to 32-bits.

The final step involves computation of the DCT, where
the DCT coefficients are stored in 20 ROM units and have
been quantized to 16-bit resolution. In addition, this step
requires 20 multipliers and 20 accumulators. The output
is triggered using a simple control register such that the
output values change only once every 512 values. Since no
further processing is required, this data is decimated by a
factor of 512 and returned as the final output.

3.2 Statistical Spectrum Descriptors

In music and audio processing, Statistical Spectrum De-
scriptors (SSDs) are often related to timbral texture [9].
For each spectral shape function, we begin by dividing the
data into short-overlapping segments, applying a Hanning
window, and computing the magnitude DFT.

3.2.1 Spectral Centroid

Spectral centroid is defined as the weighted-average (cen-
ter of mass) of the spectrum,

Cm =
∑K−1

k=0 F [k]|Xm[k]|∑K−1
k=0 |Xm[k]|

, (3)

where Xm[k] is the DFT of short-time segment m, and
F [k] is a vector of frequencies corresponding to the bins
of the magnitude spectrum.

Computation of the spectral centroid requires a multi-
plication, two accumulators, and a division. Here the spec-
trum is summed with one accumulator and the spectrum,
multiplied by the respective spectral bin values, is summed
by the other accumulator. After passing a control register
to ensure only one value is returned for each frame, the re-
sult is divided by the CORDIC divider provided by XSG.

3.2.2 Spectral “Flux”

Spectral flux is defined as the Euclidean distance between
successive spectral frames. We compute the square of this
feature, which is defined as follows:

Fm =
K−1∑
k=0

(|Xm[k]| − |Xm−1[k]|)2. (4)

Again, Xm[k] is the discrete spectrum of the current anal-
ysis frame m and Xm−1[k] is the spectrum of the previous
frame.

Spectral flux is the simplest of all of the spectral shape
features to compute. The hardware consists of a 512 sam-
ple delay block to maintain a copy of the previous frame,

275

Poster Session 2

an adder, a multiplier, and an accumulator. An important
note is that we are not computing the square root, but sim-
ply the sum of the squares as to avoid the use of additional
CORDIC functions.

3.2.3 Spectral Rolloff

Spectral rolloff is defined as the frequency beneath which a
given proportion of the total spectral energy lies, typically
85%:

Rm =
fs

K
rm =

fs

K

(
arg
rm

rm∑
k=0

|Xm[k]| = 0.85
K−1∑
k=0

|Xm[k]|

)
.

(5)

Here |Xm[k]| is the magnitude of the k-th frequency sam-
ple of the current frame and rm is the frequency sample
number that produces the desired 85% rolloff.

The core of the spectral rolloff implementation consists
of two accumulators. The first accumulator sums the spec-
trum to obtain the total energy and multiplies it by 0.85,
where as the second sums the delayed spectrum until the
total energy reaches 85%. Once this value is obtained, the
frequency value of the correspond spectral bin is returned.
Of these features, spectral rolloff is probably the most ro-
bust to quantization effects as it is returning values of an
already discretized function.

4. HARDWARE PERFORMANCE AND USAGE

The initial hardware target for this project is Digilent’s
Virtex-II Pro Development System. The Xilinx Virtex-II
FPGA on the board (XC2VP30) contains 13,969 slices,
136 18-bit multipliers, 2,448Kb of block RAM, and two
PowerPC Processors. While the available amount of FPGA
fabric is highly constrained, at an academic discounted cost
of $299.00 USD, the board is an attractive target, and its
widespread adoption in education creates greater opportu-
nities for algorithm experimentation and deployment.

Implementing only the ESD algorithm on this chip re-
quires 299 slices, 8 18-bit multipliers, and no block RAM.
Considering the total size and resource restrictions the most
limiting factor is the number of multipliers required. Us-
ing all 136 multipliers and 5,083 slices we could compute
the ESD for up to 17 analysis frames in parallel. For a
single FFT implementation, the first frame requires 1123
clock cycles to compute and subsequent frames require an
additional 512 cycles. With 17 in parallel, the first set of
frames will still need 1123 clock cycles, although we will
now output 17 frames at a time. Assuming the fabric is
clocked at 80MHz, a conservative clock speed, a break-
down of performance is shown in Table 1.

We compared the hardware performance using a sin-
gle FFT unit on an FPGA to that of the M2K toolkit [10]
and MATLAB on a set of 600 audio clips, each 30 sec-
onds in duration (the data set used in the classification task
is detailed in the next section). The M2K and MATLAB
features were calculated using a single processor core of
a 2.4 GHz Intel Core 2 CPU. Table 2 reveals the compu-
tation times for each feature set, averaged across all 600

First Subsequent Three Thirty
FFTs frame (µs) frames (µs) secs (ms) secs (ms)

1 14.04 6.400 3.316 33.08
17 14.04 0.376 0.206 1.953

Table 1. Performance of spectrogram calculation on sim-
ulated hardware.

clips, and we observe that there is more than an order of
magnitude difference between the hardware and software
implementations. While MATLAB and M2K each produce
results in just under a half second for each 30 second clip,
the hardware requires only around 33ms. Additionally, it
can be seen from Table 3 that as the number of FFT units
available on the FPGA increases, the hardware can achieve
sub 1ms computation times.

Toolkit Computation Time (s)

M2K 0.483
MATLAB 0.364
FPGA 0.033

Table 2. Comparison of feature computation times be-
tween software and hardware implementations.

In its current form, implementing the full system-on-
chip (including MFCC and SSD calculations) with a sin-
gle FFT unit requires 15,542 slices, 145 18-bit multipli-
ers, and 1,080 Kb of block RAM, which exceeds the ca-
pacity (in terms of slices and multipliers) of the hardware
target. With some additional optimization, perhaps trad-
ing off some parallelism to reduce hardware resource uti-
lization, we believe the full system could be implemented
on the targeted Virtex-II VC2VP30-based system. Other
products in the Virtex-II FPGA family provide additional
hardware resources, which offer the possibility of com-
bining multiple feature computation engines on a single
chip. For example, the Virtex-II XC2VP100 provides suf-
ficient slices and multipliers to easily accommodate 3 fea-
ture computation engines. Additionally, certain develop-
ment boards contain multiple FPGA chips, adding further
parallelization opportunities. With two FPGAs, we could
potentially accommodate 6-8 computation engines on a sin-
gle system board.

The current design requires 2048 clock cycles to pro-
duce the first output for the spectral shape features and
2560 for MFCCs. As with the ESD, each additional frame
takes 512 cycles and compute time decreases proportion-
ally with the addition of each parallel computational en-
gine. More specific timing results for a single computation
engine (again clocked at a conservative 80 MHz) are pro-
vided in Table 3, as well as theoretical performance num-
bers if six parallel feature computation engines could be
implemented on a single system. Although such develop-
ment hardware is currently quite expensive (approximately
$10K, on the order of a small cluster), the performance is
potentially faster by more than an order of magnitude.

276

10th International Society for Music Information Retrieval Conference (ISMIR 2009)

Comp. First Three Thirty
Feature Engines frame (µs) secs (ms) secs (ms)

S. Shape 1 25.60 3.328 33.09
S. Shape 6 25.60 0.576 5.536
MFCC 1 32.00 3.334 33.10
MFCC 6 32.00 0.582 5.542

Table 3. Performance of feature extraction on simulated
hardware.

5. CLASSIFICATION EXPERIMENT

In order to confirm the efficacy of the hardware extracted
features, we have conducted an evaluation of genre classi-
fication systems based on the features produced and com-
pared its performance to that of classifiers based on the
same features computed in MATLAB and the M2K toolkit
[10]. We conducted two experiments using a collection of
600 tracks drawn from the Magnatune collection of Cre-
ative Commons licensed music [11], divided into six gen-
res. An overview of the collection is given in table 4.

Genre Number of tracks

Ambient 100 tracks
Classical 100 tracks
Electronic 100 tracks
Ethnic 100 tracks
Jazz and Blues 100 tracks
Rock 100 tracks

Total 600 tracks

Table 4. Composition of dataset for genre classification
task.

Pampalk [12] identifies the potential for the over-fitting
of the characteristics of a particular artist to inflate accu-
racy scores in the evaluation of audio content-based genre
classification systems, particularly when evaluating sys-
tems on small collections. Hence, we have conducted both
artist-filtered and conventional cross-validated classifica-
tion experiments based on 5-fold random 80:20 splits and
5-fold stratified cross-validation, respectively.

5.1 Pre-processing of Features

The feature extractors yield a very large number of fea-
ture vectors for each track (based on 23 ms windows with
50% overlap), and in order to effectively and efficiently
classify tracks, the features must be summarised to pro-
duce a smaller number of more informative vectors. One
approach that has been effectively used by many authors
[12–15] is to summarise the distribution of feature frames
over the track. This may be performed by, for example,
estimating the parameters of a single Gaussian distribution
or a mixture of Gaussians. However, [16] and [12] pro-
vide experimental evidence that the performance of tech-
niques based on mixtures of Gaussian distributions are at
best equal to that of single Gaussian based approaches,
making their extreme additional computational cost im-

possible to justify. This lack of additional discriminative
power for the use of mixture distributions is at odds with
research in many other audio indexing problems [16]. Hence,
in our evaluation the feature stream is summarised as a flat-
tened single Gaussian distribution (mean vector and and
flattened upper triangular covariance matrix).

5.2 Classification Algorithms

The classification algorithms tested were drawn from the
M2K toolkit [10] and Weka [17] and include: Fisher’s Cri-
terion Linear Discriminant Analysis (LDA) [18], Classi-
fication and Regression Trees (CART) [19], a first-order
linear Support Vector Machine (based on John C. Platt’s
Sequential Minimal Optimisation, SMO, algorithm [20])
and the J48 decision tree algorithm [17].

5.3 Classification Results

The results of the artist-filtered and unfiltered classification
experiments are given in Tables 5 and 6, respectively. For
each classification method, the highest-performing feature
set is highlighted in bold.

Classifier CART J48 LDA Linear SMO
Feature set

M2K 36.43% 36.79% 35.70% 45.36%
Matlab 34.24% 35.15% 37.16% 46.63%
FPGA 34.24% 34.97% 37.89% 49.00%

Table 5. Artist-filtered classification results.

Classifier CART J48 LDA Linear SMO
Feature set

M2K 41.67% 44.50% 41.17% 59.17%
Matlab 38.83% 40.83% 40.67% 56.67%
FPGA 42.67% 39.83% 41.33% 57.50%

Table 6. Cross-validated classification results.

6. DISCUSSION AND FUTURE WORK

The results above demonstrate that the implementation of
acoustic feature computation in hardware can potentially
reduce computation times by orders of magnitude, accom-
panied, at worst, by a nearly negligible decrease in classifi-
cation accuracy. This initial implementation demonstrates
a potential pathway for migrating MATLAB feature ex-
traction code to the Xilinx Blockset in Simulink and ulti-
mately to hardware. The current implementation, however,
does not allow for easy deployment on FPGA hardware
and additional challenges lie in integrating FPGA-based
feature computation in a full MIR evaluation system.

Our next step is to create a custom platform for full
hardware deployment in a standalone system. In this sys-
tem, based on the Virtex-II Pro development board, the lo-
cal computer will communicate with the FPGA board via
gigabit ethernet. The onboard hardware PowerPC cores

277

Poster Session 2

will ease development for the standalone platform by al-
lowing us to write C code to manage the communication
link with a host PC and the data flow in and out of the
feature extraction logic.

Such a custom FPGA platform would allow algorithms
to be quickly designed and tested in Simulink, and then
compiled into Verilog code to be synthesized into the larger
project. Given a full deployment system, it will be possi-
ble to run the system at much higher clock speeds than
in the Simulink simulation and hardware-in-the-loop co-
simulation. The fully deployed system will ultimately be
a massively parallel system where multiple analysis win-
dows are processed simultaneously.

7. ACKNOWLEDGEMENTS

The authors would like to thank the International Music
Information Retrieval Systems Evaluation Lab (IMIRSEL)
at the University of Illinois at Urbana Champaign for their
help in implementing the experiments reported. This work
is partially supported by National Science Foundation grant
IIS-0644151.

8. REFERENCES

[1] J.S. Downie. The music information retrieval evalu-
ation exchange (2005–2007): A window into music
information retrieval research. Acoustical Science and
Technology, 29(4):247–255, 2008.

[2] S. B. Davis and P. Mermelstein. Comparison of para-
metric representations for monosyllabic word recog-
nition in continuously spoken sentences. IEEE Trans-
actions on Acoustics, Speech and Signal Processing,
ASSP-28, No. 4:357–366, August 1980.

[3] J. C. Wang, J. F. Wang, and Y. S. Weng. Chip design of
MFCC extraction for speech recognition. Integration,
32(1-2):111–131, Jan 2002.

[4] M. Nilsson and K. K. Paliwal. Speaker verification in
software and hardware. Microelectronic Engineering
Research Conference, 2001.

[5] W. Han, C. Chan, C. Choy, and K. Pun. An efficient
MFCC extraction method in speech recognition. Pro-
ceedings 2006 IEEE International Symposium on Cir-
cuits and Systems (ISCAS), page 4, Jan 2006.

[6] S. Nedevschi, R. Patra, and E. Brewer. Hardware
speech recognition for user interfaces in low cost, low
power devices. Design Automation Conference, 2005.
Proceedings. 42nd, pages 684 – 689, May 2005.

[7] S. Sigurdsson, K. B. Petersen, and T. Lehn-Schiøler.
Mel frequency cepstral coefficients: An evaluation of
robustness of MP3 encoded music. In Proceedings of
the Seventh International Conference on Music Infor-
mation Retrieval (ISMIR), 2006.

[8] B. Logan. Mel frequency cepstral coefficients for mu-
sic modeling. In Proceedings of the First International
Symposium on Music Information Retrieval (ISMIR),
October 2000.

[9] G. Tzanetakis and P. Cook. Musical genre classifica-
tion of audio signals. Speech and Audio Processing,
IEEE Transactions on, 10(5):293–302, 2002.

[10] J. S. Downie, A. F. Ehmann, and D. Tcheng. Music-
to-knowledge (M2K): a prototyping and evaluation en-
vironment for music information retrieval research. In
SIGIR ’05: Proceedings of the 28th annual interna-
tional ACM SIGIR conference on Research and devel-
opment in information retrieval, pages 676–676, New
York, NY, USA, 2005. ACM.

[11] J. Buckman. Magnatune: Mp3 music and music licens-
ing, April 2006.

[12] E. Pampalk. Computational Models of Music Similar-
ity and their Application in Music Information Re-
trieval. PhD thesis, Johannes Kepler University, Linz,
March 2006.

[13] K. West. Novel techniques for Audio Music Classifi-
cation and Search. PhD thesis, School of Computing
Sciences, University of East Anglia, Norwich, United
Kingdom, September 2008.

[14] B. Logan and A. Salomon. A music similarity function
based on signal analysis. In Proceedings of IEEE Inter-
national Conference on Multimedia and Expo (ICME),
August 2001.

[15] M. Mandel and D. Ellis. Song-level features and sup-
port vector machines for music classification. In Pro-
ceedings of ISMIR 2005 Sixth International Confer-
ence on Music Information Retrieval, 2005.

[16] J.-J Aucouturier. Ten Experiments on the Modeling of
Polyphonic Timbre. PhD thesis, University of Paris 6,
France, June 2006.

[17] I. H. Witten, E. Frank, L. Trigg, M. Hall, G. Holmes,
and S. J. Cunningham. Weka: Practical Machine
Learning Tools and Techniques with Java Implementa-
tions. ICONIP/ANZIIS/ANNES, pages 192–196, 1999.

[18] K. West and S. Cox. Features and classifiers for the au-
tomatic classification of musical audio signals. In Pro-
ceedings of ISMIR 2004 Fifth International Conference
on Music Information Retrieval, 2004.

[19] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J.
Stone. Classification and Regression Trees. Wadsworth
and Brooks/Cole Advanced books and Software, 1984.

[20] J. C. Platt. Fast training of support vector machines us-
ing sequential minimal optimization. Advances in Ker-
nel Methods: Support Vector Learning, 1999.

278

