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ABSTRACT 

This paper proposes a novel approach to extract the 
pitches of singing voices from monaural polyphonic 
songs. The hidden Markov model (HMM) is adopted to 
model the transition between adjacent singing pitches in 
time, and the relationships between melody and its chord, 
which is implicitly represented by features extracted from 
the spectrum. Moreover, another set of features which 
represents the energy distribution of the enhanced singing 
harmonic structure is proposed by applying a normalized 
sub-harmonic summation technique. By using these two 
feature sets with complementary characteristics, a 2-
stream HMM is constructed for singing pitch extraction. 
Quantitative evaluation shows that the proposed system 
outperforms the compared approaches for singing pitch 
extraction from polyphonic songs. 

1. INTRODUCTION 

Melody, usually represented by the pitch contour of a 
lead vocal in a song, is considered as one of the most im-
portant elements of a song. It is broadly used in various 
applications, including singing voice separation, music 
retrieval, and musical genre classification. 

Since Goto [1] proposed the first melody extraction 
system by employing a parametric model trained by sta-
tistical methods in 1999, more and more work has been 
proposed in the literature [2-8]. Because harmonic struc-
tures of a singing voice are very noticeable in spectro-
gram even in a polyphonic song, they are commonly used 
as cues for extracting the singing melody [1][4-6]. How-
ever, they neglect the contextual information of music. 

Ryynänen et al. [8] used both acoustic and musicolog-
ical models to generate hidden Markov models (HMMs) 
for a singing melody transcription system. The musico-
logical models determine the transition probabilities be-
tween the adjacent notes. Li et al. [2] also utilized an 
HMM where the transition probability was estimated 

from the labeled training data. However, they only consi-
dered the transition between adjacent notes; the concur-
rent pitches generated by other musical instruments, such 
as chords, were not considered. 

While the concurrent pitches are usually the obstacles 
in singing pitch extraction, we try to utilize them as the 
cues to extract the melody. Generally speaking, melody is 
composed of a series of notes and is decorated by chords. 
The chords here represent the concurrent pitches accom-
panying the melody. These notes and chords progress ac-
cording to some underlying music rules to make the song 
euphonious. Therefore, we use an HMM to learn these 
rules from actual song data by observing their spectro-
grams. Note that we do not identify the chords explicitly. 
Instead, we use the energy distribution of each semitone 
to train the contextual audio model. In addition, in order 
to utilize the harmonics information as cues to extract the 
singing pitches, we also model the energy distribution of 
harmonics by using the proposed normalized sub-
harmonic summation (NSHS) to enhance the harmonic 
structures of the sound sources especially for those of the 
singing voices. By synergizing these two techniques, the 
accuracy of singing pitch extraction is improved signifi-
cantly. 

The rest of this paper is organized as follows. Section 
2 describes the proposed system in detail. The experi-
mental results are presented in section 3, and section 4 
concludes this work with possible future directions. 

2. SYSTEM DESCRIPTION 

Fig. 1 shows the overview of the proposed system. Two 
streams of features are extracted from the spectrogram 
and the NSHS map, respectively, of the input polyphonic 
song. A 2-stream HMM is then employed to decode the 
input songs into the most likely unbroken pitch vectors. 
On the other hand, the MFCCs (Mel-frequency cepstral 
coefficients) are extracted to perform the voiced/non-
voiced detection. Lastly, the singing pitch vectors are 
produced by integrating the results of these two 
processes. The following subsections explain these 
blocks in detail. 

2.1 Features Extraction from a Spectrum 

This block extracts two types of features, including 
MFCCs and ESI (Energy at Semitones of Interests). 
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MFCCs are the features for a 2-state HMM for 
voiced/non-voiced detection. ESI is the 1st-stream fea-
ture for a 2-stream HMM for pitch extraction. Since 
most of the songs nowadays follow the twelve-tone 
equal temperament, it is intuitive to employ semitone 
scale to model the relations between melody and chords. 
For each integer semitone of interests within the 
range [ ]72,40 , we identify its maximum energy as an 
element of the feature vector. Take semitone 69 for ex-
ample, the search range in semitone is [ ]5.69,5.68 , cor-
responding to a frequency bin of [ ]89.452,47.427  in 
terms of Hertz. Then we find the maximum power spec-
trum within this range as the feature associated with se-
mitone 69. Since there are 33 elements within semitone 
of interests, the length of the feature vector of ESI is also 
33. 

More specifically, the ESI computed from a spectrum 
in the time frame t  can be obtained as follows: 
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where ( )∗tP  is the power spectrum calculated from short 
time Fourier transform (STFT), 1,..,1,0 −= Mm , M  is 
the total number of semitones that are taken into account, 
and mf  is the frequency of m th semitone in the selected 
pitch range. 

Note that we also need to record the maximizing fre-
quency within each frequency bin in order to reconstruct 
the most likely pitch contours. 

2.2 HMM-based Voiced/Non-voiced Detection 

This block employs a continuous 2-state HMM to decode 
the mixture input into voiced and non-voiced segments, 

similar to the one proposed by Fujihara et al. [9]. Note 
that the “voiced” here indicates the voiced singing voice, 
and “non-voiced” indicates the unvoiced singing voice 
and music accompaniments. Given the MFCC feature 
vectors },,,{ 0 ⋅⋅⋅⋅⋅⋅= txxX  of the input mixtures, the 
problem is to find the most probable sequence of 
voiced/non-voiced states, },,,{ˆ
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where )|( sxp  is the output likelihood of a state s , 
)|( 1−tt ssp  is the state transition probability from state 

1−ts  to ts , and )( tsp  is the prior of the state ts . Note 
that )|( 1−tt ssp  and )( tsp  can be obtained from the ac-
tual song data with manual annotations. 

2.3 Features Extraction from NSHS 

This block extracts the 2nd-stream feature vector which 
represents the energy distributions of the enhanced har-
monic structures of singing voices. The harmonic struc-
tures can be enhanced by sub-harmonic summation (SHS) 
proposed by Hermes [10]: 
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where ( )fHt  is the sub-harmonic summation value of  
the frequency f  at time frame t , ( )∗tP  is the power 
spectrum calculated from STFT, n  is the index of har-
monic components, N  is the number of the harmonic 
components in consideration, and nh  is the weight indi-
cating the contribution of the n th harmonic component. 
Usually we set 1−= n

n hh , where 1≤h . In order to fur-
ther enhance the harmonics of singing voices, we propose 
the use of normalized SHS (NSHS)  defined as follows: 
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where the number of harmonic components fN  depend 
on the frequency under consideration: 
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with sf being the sampling rate. The reason of the mod-
ification is based on the observation that most of the 
energy in a song in located at the low frequency bins, and 
the energy of the harmonic structures of the singing voice 
seems to decay slower than that of instruments [2]. 
Therefore, when more harmonic components are consi-
dered, energy of the vocal sounds is further strengthened. 
Although some percussive instruments (e.g. cymbals) 
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Figure 1. System overview 
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present high energy at higher frequency bins, their non-
harmonic nature does not affect the NSHS much. 

Figure 2 illustrates the energy distributions of a tradi-
tional spectrogram, original SHS map, and the proposed 
NSHS map. By comparing the spectrogram in 2(b) and 
the SHS map in 2(c), it is obvious that most of the energy 
of accompaniments in the spectrogram is attenuated in 
the SHS map. However, the energy in the lower frequen-
cy bins remains high. The proposed NSHS map shown in 
2(d) further attenuates the low-frequency energy and en-
hances the sub-harmonic structure of the singing voice. 
As a result, after the enhancement by the NSHS map, the 
pitch of the singing voice can be extracted much easier. 

Based on the proposed NSHS, we can extract a 33-
element feature vector of ESI for each given frame, as 
explained in Section 2.1. The feature vector is sent to the 
2-stream HMM for pitch extraction. 

2.4 2-Stream HMM-based Pitch Extraction 

We employ a 2-stream HMM to model the relationship 
between the adjacent melody pitches and their corres-
ponding audio context. Given the 1st-stream ESI feature 
vectors },,,{ 0 ⋅⋅⋅⋅⋅⋅= tvvV  from spectrogram and the 2nd-
stream ESI feature vectors },,,{ 0 ⋅⋅⋅⋅⋅⋅= tccC  from NSHS 
map, our goal is to find the most likely sequence of pitch 
states, },,,{ˆ

0 ⋅⋅⋅⋅⋅⋅= trrR :  

{ }
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

= ∏ −
t

tttttt
R

rrprcvprprcvprpR )|()|,()()|,()(maxargˆ
10000 ,

    (6) 

where )|( 1−tt rrp  is the state transition probability from 

pitch state 1−tr  to tr , )( trp  is the prior of the pitch state 

tr , and )|,( rcvp  is the joint output likelihood of the 
pitch state r  defined as: 

)|()|()|,( rcprvprcvp cv= ,                  (7) 

where )|( rvpv  and )|( rcpc  are the state likelihoods of 
feature vectors v and c , respectively, given the state r . 
This is a typical multi-stream HMM which is broadly 
used in speech processing [11]. The state likelihoods (or 
conditional observation likelihoods), transition probabili-
ties, and priors of eq. (6) and (7) can all be obtained from 
the actual song data with manually annotated pitch con-
tours. 

Figure 3 shows the benefits of applying a 2-stream 
HMM instead of using a single-stream feature from either 
the spectrum or the NSHS. Each of the plots is a state-
frame likelihood table where the vertical axis indicates 
the pitch state of each semitone and horizontal axis indi-
cates time frames. The likelihood is computed for each 
state and time frame. All likelihood in the same time 
frame is normalized to zero mean and unity variance for 
better visualization. The ideal singing pitches are overlaid 
as solid lines. Figure 3(a) shows )|( rvpv  of each state 
which utilizes audio context as cues to extract the singing 
pitches. Figure 3(b) shows )|( rcpc  of each state which 
indicates the likelihood that an enhanced singing harmon-
ic structure is presented, and Figure 3(c) shows the joint 
likelihood )|()|( rcprvp cv . Figure 3(d) and (e) illustrate 
the overall maximum likelihoods (up to a given frame 
time and pitch state) of single-stream HMMs using fea-
ture vectors V  and C , respectively. More specifically, 
the value of each point in the figure represents the max-
imized accumulated likelihood of the previous pitch 
states sequence including the transition probabilities.  
Again, for better visualization, each column in these two 
tables is normalized to have zero mean and unity variance. 
The joint likelihood using the 2-stream HMM is shown in 
Figure 3(f). It can be observed that the likelihood of the 
singing pitch states at around 1.2 and 5.6 seconds are low 
in Figure 3(d), but they are recovered in Figure 3(f) by 
combining with the likelihood in Figure 3(e). In addition, 
the likelihood of the states that are not corresponding to 
the singing pitches between 1.5 and 5.3 seconds in Figure 
3(e) are diminished in Figure 3(f) as well. Furthermore, 
both single-stream HMMs exhibit high likelihood for the 
singing pitch states. Therefore, after combining the like-
lihood using the 2-stream HMM, the likelihood of the 
singing pitch states are higher than that of the other states, 
and the pitches of singing voices can thus be extracted 
more accurately. 
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Figure 2. The energy distributions of a sample clip 
Amy_4_05 in MIR-1K dataset at 0 dB SNR. The distri-
butions are computed within the frequency range [80.06, 
538.58], or [39.5, 72.5] in terms of semitones. (a) The 
waveform of the mixture. (b) The spectrogram. (c) The 
SHS map. (d) The proposed NSHS map. (e) The manual-
ly labeled pitch vector of the singing voice.  
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3. EVALUATION 

Two datasets were used to evaluate the proposed ap-
proach. The first one, MIR-1K1, is a publicly available 
dataset proposed in our previous work [12]. It contains 
1000 song clips recorded at 16 kHz sample rate with 16-
bit resolution. The duration of each clip ranges from 4 to 
13 seconds, and the total length of the dataset is 133 mi-
nutes. These clips were extracted from 110 karaoke songs 
which contain a mixed track and a music accompaniment 
track. These songs were selected (from 5000 Chinese pop 
songs) and sung by our colleagues in the lab, consisting 
of 8 females and 11 males. Most of the singers are ama-
teurs with no professional training. The music accompa-
niment and the singing voice were recorded at the left 
and right channels, respectively. The second dataset, 
called commercial set for short, contains 178 song clips 
                                                           
1 The MIR-1K dataset is available at 
http://unvoicedsoundseparation.googlepages.com/mir-1k 
 

from commercial CDs, and the total length of the dataset 
is about 25 minutes. The ground truth of the voiced/non-
voiced segments and pitch values of the singing voices 
were first estimated from the pure singing voice and then 
manually adjusted for these two datasets.  

All songs are mixed at 0 dB SNR, indicates that the 
energy of the music accompaniment is equal to the sing-
ing voice. Note that the SNRs for commercial pop songs 
are usually larger than zero, indicating that our experi-
ments were set to deal with more adversary scenarios 
than the general cases. 

3.1 Evaluation for Voiced/Non-voiced detection 

The evaluation was performed via two-fold cross valida-
tion with the MIR-1K dataset. The dataset was divided 
into two subsets of similar sizes (487 vs. 513, recorded 
by disjoint subjects). In addition, the commercial set was 
also evaluated by using all MIR-1K for training. The rea-
son for not using the commercial set for training the 
voiced/non-voiced model is because its size is too small. 

39-dimensional MFCCs (12 cepstral coefficients plus 
a log energy, together with their first and second deriva-
tives) were extracted from each frame. The MFCCs were 
computed from STFT with a half-overlapped 40-ms 
Hamming window. Cepstral mean subtraction (CMS) 
was used to reduce channel effects. 

Two 32-component GMMs were trained for voiced 
frames and non-voiced frames, respectively. All GMMs 
had diagonal covariance matrices. Parameters of the 
GMMs were initialized via k-means clustering algorithm 
and were iteratively adjusted via expectation-
maximization (EM) algorithm with 30 iterations. Each of 
the GMMs was considered as a state in a fully connected 
2-state HMM, where the transition probabilities and the 
weight of each GMMs were obtained through frame 
counts of the labeled dataset. For a given input song mix-
ture, Viterbi algorithm was used to decode the mixture 
into voiced and non-voiced segments. 

Table 1 shows the performance of voiced/non-voiced 
detection. The precision is the percentage of the frames 
that are correctly classified as voiced over the frames that 
are classified as voiced. The recall is the percentage of 
the frames that are correctly classified as voiced over all 
the voiced frames. The effects of the results will be dis-
cussed in the following subsections.  

3.2 Evaluation for Singing Pitch Extraction 

The MIR-1K dataset was divided into two subsets in the 
same way as subsection 3.1 for two-fold cross validation, 
and the commercial set was evaluated by using all MIR-
1K for training. The spectrum of each frame was com-

 MIR-1K Commercial 
set 

Precision 87.48 % 91.14 % 
Recall 86.03 % 91.78 % 

Overall accuracy 81.52 % 87.12 % 
 
Table 1. Performance of voiced/non-voiced detection 
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Figure 3. The state likelihood and HMM likelihood 
comparison for the clip Amy_4_05 in MIR-1K dataset 
at 0 dB SNR. (a) to (c) and (d) to (f) show the likelih-
ood of contextual audio model, the likelihood of en-
hanced harmonic model, and the join likelihood of state 
likelihood and HMM likelihood, respectively. The solid 
line indicates the manually labeled pitch vector of the 
singing voice. 

204



10th International Society for Music Information Retrieval Conference (ISMIR 2009)  
 

puted from STFT with a half-overlapped 40-ms window 
and zero padding to 142 . In addition, the pitch range for 
computing ESI (for both spectra and NSHS) was [40-0.5, 
72+0.5] in semitones or [80.06, 538.58] in Hertz, which 
is similar to the common singing frequency range used in 
[2]. The compression factor h  for computing NSHS was 
set to 0.99. At last, a 33-dimentional feature vector tv  
from spectra and a 33-dimentional feature vector tc  from 
NSHS were extracted for each frame. 

Two diagonal 8-component GMMs,  VΓ  and CΓ , 
were trained for each of the 33 semitone models by using 
feature vectors tv  and tc , respectively. Parameters of the 
GMMs were initialized via k-means clustering algorithm 
and were iteratively adjusted via EM algorithm with 30 
iterations. Each of the mCV ),( ΓΓ  pairs (with ]32,0[=m )  
was considered as a state in an HMM, where the transi-
tion probabilities and the prior of each GMM were ob-
tained through frame counts of the labeled dataset. For a 
given input mixture, Viterbi algorithm was used to de-
code the mixture into a sequence of pitch states R̂ . By 
tracking the maximizing frequency (which generates ESI 
at each semitone) for each pitch state, we can then recon-
struct the optimum pitch contour. 

In order to evaluate the proposed method, eight other 
approaches were used for comparison. For simplicity, we 
use SPEC and NSHS to indicate ESI that were extracted 
from a spectrum or a NSHS, respectively. In addition, 
HMM, DP, and MAX are used to indicate different 
schemes for extracting the singing pitches. More specifi-
cally, HMM represents the proposed HMM approach; DP 
represents the approach of dynamic programming over 
spectrum/NSHS directly (to be detailed next); MAX is 
simply maximum-picking over spectrum/NSHS. 

The goal of the DP method is to find a path 
[ ]10 ,,,, −⋅⋅⋅⋅⋅⋅= ni ffff  that maximizes the score function: 
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where ( )tt fY  is a feature vector extracted from spec-
trum/NSHS at the frame t  and frequency tf . The first 
term in the score function is the sum of energy of the 
pitches along the path, while the second term controls the 
smoothness of the path with the use of a penalty term θ  
(which is set to 2 in this study). If θ  is larger, then the 
computed path are smoother. In particular, the MAX ap-
proach sets θ  to be zero so that maximizing the above 
objective function is equivalent to maximum-picking of 
the features from spectrum/NSHS of each frame. 

The DP method employs dynamic programming to 
find the maximum of the score function, where the opti-
mum-valued function ),( mtD  is defined as the maximum 
score starting from frame 1  to t , with mft = : 
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Moreover, the “Dressler” approach indicates a melody 
extraction method proposed by Dressler [4] which ranked 
first from 2005 to 2006 in the MIREX task of audio me-
lody extraction. We obtained the software from her for 
comparison purpose. The “Cao” approach indicates the 
method proposed by Cao et al. [5], which was re-
implemented by us for comparison. 

Figure 4 shows the performance comparison for the 
singing pitch extraction. Figure 4(a) shows the raw pitch 
accuracy with ideal voiced/non-voiced detection, where 
the correct rate is computed over the frames that were la-
beled as voiced in the reference files. Figure 4(b) shows 
the raw pitch accuracy with automatically detected 
voiced/non-voiced segments. Figure 4(c) shows the over-
all accuracy where all frames are taken into account for 
computing the correct rate. In other words, Figure 4(a) 
shows the performance of the singing pitch extraction 
alone, assuming ideal voiced/non-voiced detection. On 
the other hand, the Figure 4(b) and (c) shows the perfor-
mance in a practical situation where the results are af-
fected by the errors of voiced/non-voiced detection. 
Since Dressler’s and Cao’s method perform singing voice 
detection implicitly, their performance is only shown for 
the cases of raw pitch and overall accuracy in Figure 4(b) 
and (c). Note that Dressler’s method was designed not 
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Figure 4. Performance comparison for singing pitch ex-
traction. (a) Raw pitch accuracy with ideal voiced/non-
voiced detection. (b) Raw pitch accuracy. (c) Overall 
accuracy. 
 

205



Poster Session 2  
 

only to extract the melody from vocal songs, but also 
from non-vocal music which contains no singing voice, 
so the performance may not be as good as the other ap-
proaches that solely designed for vocal songs. 

The proposed system achieved 71.10% and 80.24% 
overall accuracy in MIR-1K and commercial set, respec-
tively. Experiments show that performance is significant-
ly improved by applying the proposed HMM and by the 
NSHS in both datasets. Two points are worth noting. 
Firstly, while NSHS enhances the harmonic structures of 
both the singing voices and chords, the energy enhance-
ment of chords is relatively weaker. Therefore, the im-
provement of using HMM over the MAX and DP ap-
proaches is much larger by using spectrum-based ESI 
than NSHS-based. This shows that the chord information 
embedded in spectrum-based ESI does help for extracting 
the singing pitches. Secondly, when spectrum-based ESI 
are replaced by NSHS-based ESI, the performance of 
MAX and DP is improved significantly. It shows that the 
NSHS does help for reducing the interference of non-
singing pitches. By taking the advantages of both ap-
proaches, the proposed method therefore performs signif-
icantly better than the compared approaches. 

4. CONCLUSIONS 

In this paper, we propose a new singing pitch extraction 
system by employing a 2-stream HMM to model the rela-
tion between adjacent notes and between melody and 
chords. By modeling the energy distribution in spectro-
gram and in the proposed NSHS map, the performance is 
significantly improved. Besides, the improvement of the 
performance is quite similar in different datasets which 
confirms the robustness of the proposed approach. 

The proposed NSHS only applies a simple weight 
function for harmonic components; the performance can 
be further improved by optimizing it with the training 
scheme proposed by Klapuri [13]. In addition, the raw 
pitch accuracy with ideal voiced/non-voiced detection of 
the proposed system is much higher than that of the over-
all accuracy (6~8%). Therefore it is also one of our future 
directions to improve the voiced/non-voiced detector by 
not only using MFCCs but also considering the voice vi-
brato information as proposed by Regnier et al. [14].  

It is worth noting that the evaluation is performed by 
using our dataset, MIR-1K, which contains more song 
clips than that used in MIREX (less than 20 minutes, and 
only 7 minutes of them are publicly available). It allows 
researchers to evaluate and compare their systems with 
others easily by using the more comprehensive dataset. 
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