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ABSTRACT

This paper presents a system for tracking the position of a
polyphonic music performance in a symbolic score, pos-
sibly in real time. The system, based on Hidden Markov
Models, is briefly presented, focusing on specific aspects
such as observation modeling based on discrete filterbanks,
in contrast with traditional FFT-based approaches, and de-
scribing the approaches to decoding. Experimental results
are provided to assess the validity of the presented model.
Proof-of-concept applications are shown, which effectively
employ the described approach beyond the traditional au-
tomatic accompaniment system.

1. INTRODUCTION

The concept of audio to score alignment refers to the abil-
ity of a system to align a digital audio signal recorded from
a music performance with its score. More precisely, given
a recording of a music performance and its score, the aim
of such alignment system is to match each sample of the
audio stream with the musical event it belongs to. There
are a number of possible applications of such technology,
ranging from the “automatic accompanist”, a software al-
lowing solo players to practice their part while the com-
puter plays the orchestral accompaniment, to tools for mu-
sicological analysis or augmented audio access.

Most systems currently used for audio to score align-
ment are based on statistical models. In particular Hidden
Markov Models (HMMs) [1, 5], possibly with hybrid ap-
proaches that make use of Bayesian networks and HMMs [8]
or Hidden Hybrid Markov / semi-Markov chains [3].

In this paper we propose an HMM-based system that
focuses on handling highly polyphonic music through the
use of a filterbank approach.

2. MODEL DESCRIPTION

The main idea of the proposed approach is that the most
relevant acoustic features of a music performance can be
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modeled statistically as observations of a Hidden Markov
Model (HMM). The process of performing a music work
can be regarded as stochastic because of the freedom of
interpretation, yet the knowledge of the work that can be
obtained from the score can be exploited to model the pos-
sible performances. In the presented system, a HMM is
built according to the data contained in the music score.
The incoming audio signal is divided into frames of fixed
length, with every frame corresponding to one time step
of the HMM; the HMM performs a transition every time a
new audio frame is observed and the advancement of the
performance in the score is tracked by performing the de-
coding of the HMM. The crucial point is the definition of
the graph topology and the observation modeling while de-
coding is performed with well-known algorithms.

2.1 Score Graph Modeling

The score modeling step aims at obtaining a graph struc-
ture representing the music content of the score. In partic-
ular, a score is represented as a sequence of events, imply-
ing that it can be transformed into a simple graph where
states are connected as in a chain. Two levels of abstrac-
tion can be distinguished in the resulting graph: a score
level modeling the macro-structure of the piece, that is the
sequence of music events, and an event level dealing with
the structure of each music event; the distinction between
the two reflects the conceptual separation between differ-
ent sources of mismatch: the former deals with possible
errors both by the musicians and in the score, while the
latter models the duration and the acoustic features of each
event, which vary depending on interpretation, instrumen-
tation, recording conditions and other factors.

2.1.1 Score Parsing

The first step in building the HMM graph is the transforma-
tion of the symbolic score into a sequence of events. In the
case of a monophonic score, all the notes and explicit rests
correspond to an event, while events in a polyphonic score
are bounded by any single onset and offset of all the notes
that are played by the various instruments/voices (see Fig-
ure 1). Due to the large availability of already transcribed
music, MIDI has been used as the score representation for-
mat although, being provided by end users, most of the
MIDI files contain transcription errors that may influence
the alignment effectiveness.
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Figure 1. Score representation

2.1.2 Graph Topology — Score Level

In its simplest form, the topology of the score level graph
directly represents the succession of events: the states, each
corresponding to a single music event, form a linear chain,
as seen in Figure 2(a). This approach has no explicit model
for local differences between the score representation and
the actual performance that has to be aligned, thus the over-
all alignment can be affected by local mismatches. For in-
stance, a skipped event, which should create only a local
misalignment, can extend its effect also when subsequent
correct events are played resulting in larger differences in
the alignment.

In order to overcome these problems, a special type of
states was introduced, namely ghost states — as opposed
to event states, which correspond to real events in the mu-
sic work. Ghost states were proposed in [4]. The basic
graph topology is modified so that each event state can
perform a transition to an associated ghost state, which in
turn can perform either a self-transition or a forward tran-
sition to subsequent event states. The final representation
is made of two parallel chains of nodes, as shown in Fig-
ure 2(b). This approach can model local differences be-
tween the score and the performance, because in this case
the most probable path can pass through one or more ghost
states during the mismatch and realign on the lower chain
when the performance matches again the score. The transi-
tion probabilities from event states to corresponding ghost
states are typically fixed, while the transition probabilities
from a ghost state to subsequent event states follow a de-
creasing function of distance: this resembles the idea of
locality of a mismatch due to an error.

2.1.3 Graph Topology — Event Level

The event level models the expected acoustic features of
the incoming audio signal. Every state of this level is mod-
eled as a chain of n sustain states, each having a self-loop
probability p, possibly followed by a rest state, as shown
in Figure 2(c). Sustain states model the features of the sus-
tained part of an event, while rest states model the possi-
ble presence of silence at the end of each event that can
be due to effects such as staccato playing style. As de-
scribed in [7], the probability of having a segment duration
d is modeled by a negative binomial distribution, with ex-
pected value p1 = 7" and variance o? = 1%)2 . The
duration of an event is modeled by setting the values of n
and p accordingly; in particular p is set equal to the event
duration in the score.

Two cases can be distinguished depending on the choice
of having n fixed or variable. In the former case event du-
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Figure 2. Graph topologies

ration is modeled by self-loop probability. This approach
is easy to implement and with a small n the total number
of states in the graph is relatively small and proportional to
the number of events; on the other hand the variance of the
distribution changes with events duration. The latter case
allows for a more precise modeling of event duration. It is
reasonable to compute n and p in order to have o2 = ky,
where p is constant for all the events, and the only parame-
ter responsible for the event duration is the number of sus-
tain states, of which the total number is thus proportional
to the duration of the score.

2.2 Modeling the Observations

The fundamental assumption of the model is that states of
the event level emit the expected acoustic features of the
incoming signal. Because polyphonic pitch detection is
still unreliable, the signal itself is not analyzed, instead its
harmonic features are compared to the expected features of
the emissions of the HMMs.

2.2.1 Sustain States

The core feature used by the observation modeling of sus-
tain states is the similarity, for each audio frame, between
the spectrum of the incoming signal and an ideal spec-
trum of the sustain state that is being considered. Sophis-
ticated techniques have been proposed making use of spe-
cific knowledge of instrument timbre [2]. Although very
effective in specific situations, such as contemporary mu-
sic performances where the instruments can be sampled,
this kind of approach is not suitable for the general case
where the instrument cannot be known in advance from
the score.

Typically, spectrum analysis is done via the Fast Fourier
Transform: the energies for the various frequency bands
are computed by summing the energies in the appropriate
FFT bins. The problem with this approach is that the linear
frequency resolution of the FFT leads to a significant loss
of precision in the lower frequency range. While the situa-
tion is partially compensated by upper harmonics a differ-
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ent strategy can nevertheless improve the performances of
a system.

In our approach, the frequency resolution problem is
handled using a bank of discrete filters. In particular, each
one is a second order filter of the form

(1 —7:)y/1 — 27, cos(20;) + 12
(1 —re=30iz=1)(1 — rjefiz=1)

Hi(z) =

6]

which has unit gain at ; (the normalized nominal frequency
of the i-th note), and allows, by changing the pole radius
ri, to set the filter bandwidth; each filter output is then
routed to a delay line in order to compensate for the dif-
ferent group delays: assuming that each filter has the same
bandwidth in semitones, the filters corresponding to the
lowest notes have a much higher group delay than the high-
est ones. We assume that this delay, which can be removed
off-line or compensated in real time applications, is to be
preferred to a lack of frequency resolution for lower notes.
A comparison of FFT and Filterbank analysis is presented
in Section 3.3.

The observation probability of a note is computed by
partitioning the spectrum into frequency bands, with each
band corresponding to a note in the music scale. Let Ef
be the energy of the i-th filter output signal in the current
frame, i.e. Ezf = Y, y2(t); the energy E corresponding
to the ¢-th note can be defined as

n _ f
Bl =2 Bl @
J

where w; = 1 and h(j) is a simple map between the in-
dex of a harmonic and the corresponding note index. In
this very simple instrument model, the energy for the note
C3 is computed as the sum of the energies for the filters
corresponding to the notes C3, C4, G4, C5, ES, and so on.
The observation probability for the i-th sustain state is
computed as
(2
tot
where E; is the energy in the expected frequency bands
and E, is the total energy of the audio frame. F'(-) is the
unilateral exponential probability density function
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Other similarity functions can be applied with similar re-
sults, in particular the cosine distance between the vec-
tor representations of the simple instrument model used to
compute F; and the filter output energies.

While the above approach is robust enough for mono-
phonic alignment, the complexity of polyphony makes it
preferable to apply a different weighting of the harmonics
in the instrument model. A possible solution is to modify
Equation 2 by adding decreasing weights to the note har-
monics to reflect a more realistic instrument model. When
filters overlap for some harmonics of different notes, the
weight assigned to that harmonic in the instrument model
can be either the sum or the maximum of the individual

weights; the latter solution seems to perform better, and the
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intuitive explanation is that typical scores do not contain
precise information about the loudness of each note/part,
so a simpler model is more general.

2.2.2 Rest States

The observation probability for the i-th rest state is com-
puted as a decreasing function of the ratio of the current
audio frame energy over a reference threshold represent-
ing the maximum signal energy.

E tot

)
E thres

b = F(5™)
The threshold is adaptive, to compensate for possible dif-
ferences in the overall recording volume of different input
streams.

2.2.3 Ghost States

A simple approach for modeling the observations of ghost
states is to assign a fixed value to the observation proba-
bilities, because these states are meant to provide a sort of
“emergency exit” for local matches. The approach can be
improved by computing the observation probability for the
i-th ghost state as:

i+k

b =3 wi(i)n” ©6)
Jj=t

that is, a weighted sum of the sustain observation proba-
bilities of the following event states, where w;(-) is a de-
creasing discrete distribution function and its presence is
motivated by the fact that, intuitively, in case of wrong or
skipped notes, the notes actually played would probably be
close to the expected ones. In case of errors in the score,
the weighting function induces the system to quickly re-
align on near notes.

2.3 Decoding Strategies

The proposed system exploits the decoding algorithms de-
scribed in [6], depending on the application context, namely
forward decoding and forward-backward decoding. These
strategies determine, at each time interval, the most proba-
ble state, without forcing the decoded sequence of states to
actually be the most probable sequence of states as is the
case for Viterbi decoding. Preliminary tests showed that
the system recovers more quickly, because the decoded se-
quence does not need to be a feasible state sequence.

Figure 3 compares a typical evolution of the state prob-
abilities for the forward and forward-backward decoding
algorithms. The latter is characterized by a more precise
evolution, a highly desirable behavior in the case of subse-
quent events with the same set of harmonics: if no model-
ing of a note attack is employed — as is the case with the
current version of the system — and the rest states at the
end of the lower level event chain do not help discrimi-
nating the events, the evolution of forward-backward de-
coding automatically assigns to the events a duration in
the alignment which is proportional to the duration in the
score.
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Figure 3. Evolution of state probabilities

3. EXPERIMENTAL RESULTS

The evaluation of an audio to score alignment system is
a difficult task, mainly because of the lack of a manually
aligned test collection of polyphonic music. For instance,
the MIREX test collection is not publicly available because
of copyright reasons and it contains mainly monophonic
recordings. For this reason, two test collections have been
prepared, the former made up of single-instrument poly-
phonic pieces and chamber music and the latter compris-
ing excerpts of more complex orchestral works. A experi-
mental comparison of the FFT and Filterbank analysis ap-
proaches is presented using recordings of tuba and cello
music, characterized by a low frequency content.

3.1 Single Instrument and Chamber Music Collection

The audio collection is made up of excerpts from well known

piano, violin, and chamber music works I extracted from
CD and home recordings; the MIDI files were downloaded
from the Internet. The files in the collection have been cho-
sen so that the complexity of their polyphony is representa-
tive of pieces which could be realistically used in a typical
automatic accompaniment system, with real time require-
ments. The resulting alignments were manually checked,
visually inspecting the mismatches and aurally verifying
them by listening to a stereo recording containing the orig-
inal piece and a synthesized version generated from the
alignment data on different channels.

Out of 20 test recordings, none caused the system to get
lost, but in one case the alignment was very unstable (it
was always in proximity of the “true” alignment but never
precise) so its contribution will not be considered. For the
other recordings the mismatches were classified according
to their duration as either brief (shorter than two seconds)
or long (larger time intervals, although never more than 10
seconds); the former type of mismatches occurred 41 times
while the latter 10 times, mostly on complex passages of
polyphonic material. Example alignments can be viewed
and heard in the authors’ home pages?, where more de-
tailed statistics can also be found.

Because of the real time requirements, the forward de-
coding algorithm was used to compute the alignments. If

I Bach: Italian Concerto, Goldberg Variations, Chaconne from the Vi-
olin Partita in D minor; Beethoven: Piano Sonata op. 13, String Quar-
tet op. 18 n. 1; Mozart: Piano Sonata KV333; Ravel: String Quartet;
Schubert: Quartettsatz D703; Schumann: Waldszenen op. 82.

http://www.dei.unipd.it/ montecc2/ismir09/
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(a) Forward decoding (b) Forward-backward decoding

Figure 4. Typical alignment evolution

real time is not a constraint, usually forward-backward de-
coding gives better results, in which many of the glitches
in the forward-decoded alignment are eliminated. Such an
example is shown in Figure 4.

All the alignments have been performed using the same
model parameters; further experiments showed that some
improvements can be obtained by assigning different weights
to the harmonics in Equation 2 for piano and string works.
Essentially, the different weighting reflects the suitability
of a more refined instrument model, in particular the piano
model is characterized by more rapidly decaying overtones
than the string model.

3.2 Orchestral Music Collection

The orchestral music collection comprises 48 excerpts of
40 seconds from CD recordings of symphonic works 3 ; the
MIDI scores are generally much less accurate than the ones
used in the chamber music collection.

A simple evaluation methodology was devised in order
to present results for this collection. The output of the
alignment system for a single performance/score couple
is a list of value pairs in the form [audiotime,miditime].
Once all the performances in a collection are aligned to
their corresponding score, these alignments are analyzed
to extract a measure of precision based on the average de-
viation of the alignment data from the best fitting line. This
measure is based on the hypothesis that an orchestra plays
more or less a tempo, at least in short time intervals, thus
a graphic representation of the alignment should follow a
straight line. While this is clearly a potentially incorrect
assumption, the suitability of the particular performances
in the test collection was verified by the authors. The best
fitting line computed from the alignment data is thus as-
sumed to be the correct alignment; A, is defined as the
average deviation of the alignment data point from the best
fitting line. Under the assumption of a performance char-
acterized by a steady tempo, the lower is A, the higher
is the alignment accuracy. This evaluation methodology
was not used for the chamber music collection because the
tempo was not steady enough.

Figure 5 shows the histograms of the slope and A4
distributions for the best fitting lines obtained from the
alignments. The tempo of the recorded performances and
of the respective MIDI files are roughly comparable, so

3 Beethoven: Symphonies n. 3, 7, 9; Haydn: Symphony n. 104;
Mendelssohn: Symphony n. 4; Mozart: Symphonies and Serenades
K136, K412, K525, K550; Vivaldi: The Four Seasons.
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(a) Slopes histogram (b) Aqug histogram

Figure 5. Orchestral collection alignment results

the expected histogram of the slopes should be centered
around 1; an alignment can thus be safely considered in-
correct when slope values are outside the interval (0.6, 2).
This simple assumption allows to quickly interpret the graph-
ical results and deduce that the performance of the system
with orchestral music is, as expected, clearly worse than
the case for single instrument or chamber music, in which
all alignments were essentially correct. Manual inspection
of the results showed that the correct alignments were 36;
for those, the average A, was 0.47.

A closer analysis pointed out that in the correct and in-
correct sets of alignment the elements are homogeneous
with respect to the music work, e.g. all Vivaldi’s and most
of Mozart’s music was correctly aligned while most of
Beethoven’s were not. The reason for this was found out
to be the fact that in the recordings of Beethoven’s works
the reference pitch was slightly higher than the standard
440 Hz for A4; correcting this setting considerably im-
proved the results for Beethoven’s music. This situation
is a clear example of how a single set of parameters is not
suitable for all the possible situations, but this is typically
not a requirement: in the offline case multiple alignments
can be performed and only the best one, according to the
simple heuristics discussed above, can then be presented to
the user, while when real time is required, it is reasonable
to assume that the system parameters can be adjusted using
previous rehearsals as reference.

In the above results, the forward decoding algorithm
was used to compute the alignments; the reason is that the
forward-backward algorithm turned out to be less robust
for aligning performances where an alignment computed
with forward decoding was not precise.

3.3 Comparison of FFT and Filterbank analysis

Several experiments were performed on a small collection
of recordings of tuba and cello music, to show the advan-
tages of discrete Filterbank analysis over traditional FFT
for observation modeling on music characterized by a low
frequency content. The recordings were aligned manually
in order to count the number of wrongly recognized or
skipped notes. Of 105 total events, the FFT based system
did not recognize 12 and skipped 1, while the Filterbank
based system did not recognize only 4 notes and skipped
none. It should be noted that in almost all cases of not
recognized notes both system realigned on the correct note
immediately, and that the parameters of the systems were
not tuned for this particular situation, so that better per-
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formances can be expected; forward decoding was used to
simulate a real-time operation. The alignments of the worst
performing recording are shown in Figure 6.

4. APPLICATIONS

Two applications are presented that make use of audio to
score alignment technology for music analysis tasks.

4.1 AudioZoom

AudioZoom is a software for the auditory highlight of sin-
gle instruments in a complex polyphony. The basic idea
is that the alignment can help dividing a polyphonic music
performance into its individual components: the general
problem is known as source separation, which is usually
defined blind when it is assumed that almost no informa-
tion is available about the role of each source. In our case,
having the score as a reference, the system has a com-
plete knowledge about the notes played, at each instant,
by all the instruments. The user, typically a teacher who
may exploit this tool to highlight particular instruments or
passages to students that are not able to follow a complex
score, can select one or more instruments, one or more par-
ticular musical themes or patterns, or any combination, and
the system can selectively amplify the chosen elements.

The final effect is to put on the front, or zooming, the
interested elements. A prototype of AudioZoom has been
developed, based on a bank of bandpass filters centered
around the harmonics of a selected instrument, using an
approach similar to the instrument model described in Sec-
tion 2.2.1. The user selects one channel from the MIDI file
that represents the score, and the system aligns the differ-
ent filterbanks with the audio recording. An example of
the effect of AudioZoom, applied to the viola part of the
beginning of Haydn’s Symphony n. 104, is shown in the
sonograms of Figure 7.

4.2 Interpretation Analysis

Analyzing different interpretations of a music work is a
central activity of musicological analysis. Of all the fea-
tures that characterize a personal rendition, tempo is prob-
ably the most perceivable one. The alignment of two audio
performances allows to compare the relative tempos, but
neither can be considered as a reference since no interpre-
tation can be neutral. It can be noted that the concept of
neutral interpretation is itself not well defined.
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The alignment of two interpretations to the score allows
a musicologist to draw some considerations on the differ-
ent interpretations, for instance by comparing the instanta-
neous tempo at each bar. Figure 8 shows an early prototype
of a tool for the comparison of different performances, in
which two interpretations of the beginning of J. S. Bach’s
Italian Concerto are juxtaposed using the measures in the
score as a reference. Clearly, the prototype can be extended
by representing the differences in loudness, the use of ac-
celerandi and rallentandi or more complex features related
to timbre perception.

5. CONCLUSIONS AND FUTURE WORK

A system is proposed for the alignment of an audio per-
formance with a score. The system is based on the use
of filterbanks to extract pitch related information from the
performances. Comparative evaluations with previous ver-
sions of the system showed that observation modeling based
on discrete filterbanks has some advantages with respect
to the simpler FFT approach, resulting in higher effective-
ness. In general, evaluation showed that the approach can
be effectively applied to real application scenarios; many
areas however can be improved, and below we propose
some research directions which seem the most promising.
A clear priority is the creation of a collection which
comprises precise manual alignments, in order to properly
evaluate the effectiveness of the approach but also to train
the model parameters in a rigorous way. This is a very
time-consuming task, requiring music experts and specific
annotation tools for properly marking the matches between
the events in the scores and the corresponding time in-
stants in the recordings. The only viable solution in our
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opinion is to involve other research teams in building a
shared collection of reasonable size; such collaborative ef-
fort would also help in devising appropriate data and eval-
uation methodologies for alignment system. A good start-
ing point is the collection used for the MIREX campaigns,
which should be improved adding polyphonic scores and a
clearer time reference for the alignment evaluation.

The introduction of a refined modeling for the attack of
notes is desirable for many instruments with percussive at-
tacks — in particular the piano — to better handle repeated
notes, but with the appropriate decoding strategies this is-
sue is not critical. Another improvement regards the mod-
eling of complex events, such as trills or glissandi, which
are hard to extract from MIDI files, resulting in potentially
less effective models.
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