
10th International Society for Music Information Retrieval Conference (ISMIR 2009)

  
 

TONAL-ATONAL CLASSIFICATION OF MUSIC AUDIO 
USING DIFFUSION MAPS 

  Özgür İzmirli   
  
  

Center for Arts and Technology 
Computer Science Department 

Connecticut College 
oizm@conncoll.edu 

 
 

    

ABSTRACT 

In this paper we look at the problem of classifying music 
audio as tonal or atonal by learning a low-dimensional 
structure representing tonal relationships among keys. 
We use a training set composed of tonal pieces which in-
cludes all major and minor keys. A kernel eigenmap 
based method is used for structure learning and discov-
ery. Specifically, a Diffusion Maps (DM) framework is 
used and its parameter tuning is discussed. Since these 
methods do not scale well with increasing data size, it 
becomes infeasible to use these methods in online appli-
cations. In order to facilitate on-line classification an out-
of-sample extension to the DM framework is given. The 
learned structure of tonal relationships is presented and a 
simple scheme for classification of tonal-atonal pieces is 
proposed. Evaluation results show that the method is able 
to perform at an accuracy above 90% with the current 
data set.  

1. INTRODUCTION 

Audio key estimation is an important aspect of MIR. It 
informs many other tasks including music analysis, seg-
mentation, cover song detection, modulation tracking, 
local key finding and chord recognition. In order to esti-
mate the key, most key finding models use a similarity 
metric between predetermined reference features and the 
analyzed features from the audio. All of these approaches 
assume that the fragment of the piece being analyzed 
contains tonal music and furthermore that musical con-
tent is in a single key. These models generally lack me-
chanisms to detect music that is not tonal and hence 
would make best-guess estimates regardless of the tonal 
quality of the input. One important question, which is the 
topic of this paper, is how to determine whether a piece 
belongs to the tonal idiom: whether there are clear and 
unambiguous tonal implications or not.   

In this work, we explore the utility of dimensionality 
reduction, manifold learning and structure discovery in 
the context of tonal versus atonal music audio classifica-
tion. We investigate the possibility of learning a low-
dimensional structure representing tonal relationships 
among pieces. We report on experiments that utilize Dif-
fusion Maps to perform dimensionality reduction and 
feature extraction from high-dimensional spectral data. 

We use a set of audio recordings representative of all 24 
keys as the reference training set and test the model with 
tonal and atonal audio fragments to evaluate its perfor-
mance.  

The structure of the paper is as follows: The next sec-
tion makes reference to related work and explains the 
concept of tonalness. Section 3 describes kernel methods 
and DM in particular. This section also discusses the tun-
ing of the width parameter of DM. Section 4 outlines the 
main outcomes and describes the evaluation method. Sec-
tion 5 concludes the paper.   

2. RELATED WORK 

Temperley describes a probabilistic framework on sym-
bolic data for measuring tonal implication, tonal ambigu-
ity and tonalness for pitch-class sets [1]. According to 
his definition, tonal implication is the key implied by the 
pitch-class set being used. Ambiguity refers to whether a 
pitch set implies a single key or several keys. Tonalness 
is the degree to which a set is characteristic of common-
practice tonality. In this sense, our work relates directly 
to the concept of tonalness. Our assumption is that a 
piece that conforms to pitch distributions of common 
practice tonality will have certain spectral properties that 
distinguish it from other types of pitch distributions such 
as those found in twelve-tone music or polytonality. 
These spectral properties, or so called spectral signa-
tures, have native representations in a high-dimensional 
space and therefore need to be mapped to low-
dimensional features to be useful - not only for classifi-
cation purposes but also for visualization and geometric-
al interpretations. The remainder of the paper discusses a 
method to classify music audio based on the degree of 
tonalness.  

In her thesis, Gómez applied her key finding method 
to an atonal piece by Schoenberg [2]. She observed that 
the correlations of her Harmonic Pitch Class Profile 
(HPCP) with the major and minor profiles, that are de-
rived from Krumhansl's work, remained low throughout 
the piece, indicating ambiguity. 

Izmirli reported on the performance of a template 
based key finding algorithm using a low-dimensional 
representation obtained through dimensionality reduction 
[3]. He graphed the performance of his method as a 
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function of the number of dimensions and noted that 2 
and 3 dimensions produced acceptable accuracy for the 
particular model he was using.  

Purwins briefly discusses poly-tone analysis and ton-
al ambiguity in relation to Pitch Class Profiles that he 
uses in his key finding algorithm [4]. 

3. DIMENSIONALITY REDUCTION, MANIFOLD 
LEARNING AND STRUCTURE DISCOVERY 

3.1 Method 

In general, given a set of training data we would like to 
infer some parameterization of it such that new data can 
be efficiently compared to the training data. The parame-
terization can then be used for many different purposes 
including classification. In the following we present a 
method that performs dimensionality reduction on a train-
ing set of tonal audio in order to find a representative 
structure. The resulting low dimensional representation is 
then used to determine whether new input data resembles 
the training data or not; more specifically, if it is tonal or 
atonal. This section describes the method of dimensional-
ity reduction used and a scalable extension for new data. 

3.2 Kernel Methods 

In contrast to the standard linear methods such as Prin-
cipal Component Analysis (PCA) and Multidimensional 
Scaling (MDS) for dimensionality reduction, nonlinear 
methods are better suited to preserving local geometry. 
This is due to the fact that they attempt to approximate 
manifolds in the high-dimensional space by considering 
connectivity between neighboring points as opposed to 
capturing the global nature of the data. Nonlinear me-
thods include Isometric Feature Mapping (ISOMAP), 
Kernel PCA and a class of kernel eigenmap methods in-
cluding Laplacian Eigenmaps, Locally Linear Embedding 
(LLE), Hessian Eigenmaps (Hessian LLE) and Local 
Tangent Space Alignment (LTSA). In [5] Coifman and 
Lafon show that the kernel eigenmap methods are special 
cases of a general framework based on diffusion 
processes. Here, we follow a formulation for dimensio-
nality reduction, manifold learning and data parametriza-
tion based on DM [5]. The major advantages of this ap-
proach over PCA and MDS are that it is nonlinear and 
preserves local structures. Kernel eigenmap methods rely 
on the idea that eigenvectors of a transition matrix 
representing the distances between points in the input 
space can be interpreted as coordinates on the data set. 

3.3 Diffusion Maps 

The concept of diffusion maps stems from dynamical 
systems and it is based on a Markov random walk on the 
graph of the data. The proximity of the data points is 
modeled as diffusion distances according to the affinity 
between neighboring points. DM preserves local geome-

try present in the high-dimensional input while perform-
ing dimensionality reduction.  

Assume the data set containing k elements is given by 
X={x0, x1, x2, ...,xk-1} with xi element of Rm. A pairwise 
similarity matrix L is calculated using a Gaussian kernel 
with parameter ε : 
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Furthermore, a diagonal normalization matrix is defined 
to make the sum of the rows of L equal 1: 
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The normalized graph Laplacian is then given by the 
Markov matrix LDM 1−= . In order to find a mapping, 
Φ , from Rm to Rn, where m > n, an eigen-decomposition 
of M is performed. The eigenvectors and eigenvalues can 
be found by solving the equivalent generalized eigenva-
lue problem φλφ DL = . When ε in Eq. 1 is large enough, 
M is fully connected and has a unique eigenvalue of 1. 
From the remaining k-1 eigenvalues, n of the largest 

0≥≥ n...1> 21 ≥≥ λλλ  and their corresponding eigen-
vectors nφφφ ,...2,1 can be retained to map input samples 
from the high-dimensional space onto the lower dimen-
sional feature space. The mapping is given by  
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where index i in )(inφ represents the i'th element of the 
eigenvector. 

3.4 Determining ε 

The width parameter, ε, controlling the Gaussian in Eq. 1 
has an effect on the locality of the structure captured. For 
example, a relatively small ε will capture the local struc-
ture better. However, if ε is too small then matrix L will 
have many small elements and hence, low connectivity, 
which will prevent it from capturing the desired structure. 
An unnecessarily large value on the other hand will cause 
the method to overlook the local structure. Although the 
value of this parameter is data dependent, fortunately, its 
choice can be automated. 

 Several approaches have been proposed to determine 
the optimal value of ε. The average of the distances be-
tween nearest neighbors in the data set are used in [6]. 
Another method is to adjust the parameter until every 
point has a significant connection to at least one neigh-
bor. We follow the approach used in [7]. The method 
consists in searching for a point on the linear segment of 
the log-log graph of  )(εT and ε, where 

  ∑∑=
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The graph contains two asymptotes, )(lim εε T∞→ and 
)(lim 0 εε T→ which are connected by an approximately 

linear line. We choose ε corresponding to the midpoint 
between the asymptotes in this graph. 

3.5 Scalability and Out-of-Sample Extensions 

Kernel methods described in the previous section have 
been successfully applied to dimensionality reduction and 
manifold learning. They are, however, computationally 
expensive and do not scale well to large data sets. They 
also do not directly accommodate new data and in that 
sense are limited to their training set requiring a new run 
every time new data is to be added. 

Out-of-sample extensions are approximations that 
utilize the original eigen-decomposition to compute the 
mapping of new samples that do not belong to the origi-
nal data set. In [8] the authors discuss how to compute 
out-of-sample extensions for various kernel methods. We 
employ the Nystrӧm extension to find the mapping of the 
new data point as follows: 
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Once  is calculated, it is substituted for the 

corresponding eigenvectors in Eq. 3 to obtain the position 
in the lower dimensional feature space. 
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Calculation of the Nystrӧm extension is computation-
ally light. The denominator of Eq. 5 can be precalculated 
and the numerator is just a scaled sum of k vectors.  

4. LEARNING TONAL STRUCTURE 

4.1 Geometric Models of Pitch and Key 

Many geometric models of pitch and key space have been 
proposed that originate from music theory and cognitive 
science. These include structures such as a circle, torus, 
helix and double helix (See for example [9] and [10]). 
Furthermore, most of these geometric structures are cyc-
lic at one if not at multiple levels. In its simplest form, we 
know that key arrangements of the 12 major keys moving 
in fifths forms a circle. Similarly minor keys follow the 
same pattern. Obviously, this is based on the assumption 
that the music is performed in an equal tempered system.  

In [11] it has been demonstrated that this or another 
cyclic structure can be captured from the audio of musi-
cal instruments playing diatonic scales. In this 2-
dimensional space, points that represent key centers are 
organized in such a way that if we draw lines between the 
closely related keys the resulting arrangement forms a 
closed loop visiting each key center once.  

4.2 Learning Structure from Audio Data 

In this work, we explore the utility of structure discovery 
in the context of tonal versus atonal music audio. We ob-

tain a chroma representation similar to [12] from the 
Hanning windowed short-time Fourier Transform. A 12-
element chroma vector is obtained by summing the semi-
tone frequency ranges of the amplitude spectrum accord-
ing to pitch-class equivalence. That is, the semitone fre-
quency range around the fundamental frequency of a 
note, the range around its octave and its second octave 
etc. all map to a single bin in the chroma vector.  

Initially, we employed the method outlined in Section 
3 to test if it was able to learn a low-dimensional struc-
ture using only recordings of tonal music. The training 
data, X, comprised of chroma vectors calculated from ini-
tial fragments of 289 pieces containing compositions 
mainly from the common practice period. Each point in 
the data set, xi, represents the average of 30 seconds of 
music taken from the beginning of each piece. This dura-
tion was determined experimentally and can be chosen to 
be shorter without significantly effecting the algorithm's 
output. Note that the training is unsupervised and al-
though the key labels are known from the titles of pieces 
they are not part of the input. The key distribution of the 
data set, although not completely uniform, is such that the 
lowest number of pieces in the same key is 9. For a col-
lection of this size, a completely even distribution would 
require 12 pieces for each of the 24 keys. Although it 
would have been possible to either trim all pieces to the 
same number or add more pieces to bring the key totals to 
the same level, the current distribution was kept to ob-
serve the sensitivity of the DM algorithm to the density 
of samples on the manifold. It should be mentioned that 
sampling density is a main concern for many manifold 
learning algorithms and may need special attention if the 
spatial distribution is unbalanced. 

 

 
Figure 1. The input data set consisting of tonal pieces 
mapped to the first two dimensions. A circular structure 
resembling the circle-of-fifths is captured for the chro-
ma representation (left) and for the spectral representa-
tion (right). 

 
The left plot in Figure 1 shows the mapping Φ with 
2=n  in response to the input data set, X, based on the 

chroma representation as described above. The out-of-
sample extension is not used for this part. A circular 
structure is clearly visible in the figure which means it 
was able to capture some kind of circularity. Then again, 
this highly resembles the circle-of-fifths pattern. We veri-
fied the order of keys by analyzing their key labels to 
make sure the neighboring clusters were in a fifths rela-
tionship. There was considerable scatter within classes 

689



Poster Session 4  
 

that belong to the same key. There was also significant 
overlap between classes, yet, the circle-of-fifths pattern 
was evident. The output for the spectral representation is 
shown in the right plot in Figure 1. These vectors are the 
same spectral vectors used to calculate the chroma repre-
sentation. The reason for inclusion of the spectral vectors 
is to see if DM is able to obtain a mapping on par with or 
better than the traditional chroma representation. It 
should be noted that the uneven density of points does 
manifest itself in both plots without loss of generality of 
the result. 

To further demonstrate the circle-of-fifths pattern we 
used chroma templates obtained from the audio of mono-
phonic instrument sounds playing major scales. Each of 
the 12 templates consists of a single scale over multiple 
octaves. The details of the construction of the templates 
can be found in [13] and [14]. The templates were 
mapped using the out-of-sample method with respect to 
the tonal training data, X, described above. The results 
are shown in Figure 2. Here, each template represents an 
ideal key position in the feature space and the projection 
serves as a demonstration of the circle-of-fifths relation-
ship among the 12 major keys. A similar order has also 
been observed for minor keys. 

 
 

Figure 2. Mapping of audio templates to the first two 
dimensions. The labeled points representing the major 
templates are superimposed on the chroma based repre-
sentation in Figure 1 (left). 

4.3 Training and Test Data for Evaluation 

Starting from the observation that a data set containing 
pieces in all 24 keys results in the constellations shown in 
Figure 1, we turn to testing the DM model with tonal and 
atonal data using the out-of-sample extension described 
above. For this part we added 25 complete atonal pieces 
composed by Boulez, Schoenberg and Webern. Both the 
tonal and atonal pieces were segmented into 10-second 
fragments. There are 599 atonal fragments and 925 tonal 
fragments in the data set. Each fragment is represented as 
a point, xi, found by dividing the spectral or chroma vec-
tors by their L2 norm, and an associated tonal/atonal label 
serving as ground truth for evaluation purposes. The fre-
quency ranges of interest for both representations are 55 - 
2000 Hz. The training data set was constructed as fol-

lows: 60% of the tonal points were randomly chosen and 
were used to train the DM model. The remaining 40% 
were added to the test set accompanied by an equal num-
ber of points randomly chosen from the atonal set. After 
calculating the original mapping using 60% of the tonal 
points, the out-of-sample calculations were performed on 
the test set. Figure 3 shows the mapping of the test results 
onto the first two dimensions. These results are overlaid 
with the training points to show the nature of generaliza-
tion the extension brings.  

 
 

Figure 3. Training and test data mapped to the first two 
dimensions: chroma based inputs (top) and spectrum 
based inputs (bottom). Tonal training data are shown 
with dots (.), the tonal test data are shown with circles 
(○) and the atonal test data are shown with pluses (+). 

4.4 The Tonal-Atonal Classifier 

As can be easily observed from Figure 3, the tonal train-
ing points and the tonal test points tend to appear at posi-
tions closer to the outer circular pattern whereas the aton-
al test points tend to appear near the center. Therefore, 
we simply choose to use the Euclidean norm of a point in 
the feature space to quantify its tonalness as defined in 
Section 2. For the 2-dimensional case, the performance of 
the classifier is given by the peak classification accuracy 
in which a circle acts as the class boundary. It should be 
noted that although we treat the problem as a two-class 
classification task in this paper, in fact, the calculated to-
nalness is a continuous entity and is indeed correlated 
with the degree of the musical fragment's tonal implica-
tion. The distances in the feature space can be used to 
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quantify the degree of tonalness. A study of the tonalness 
of transpositional type pitch class sets can be found in 
[15].  

4.5 Results 

An average accuracy was calculated by running the 
above classification 10 times. The chroma based classifi-
cation resulted in an average accuracy of 91.2% and the 
spectrum based classification resulted in 90.4% accuracy. 

As an alternative feature we ran a classification task 
based on the variance of the chroma and spectrum vec-
tors (xi) to see how they compared with the presented me-
thod. The intuition was that the chroma vector corres-
ponding to tonal pieces would have more variance com-
pared to atonal pieces because it would exhibit a strong 
interleaved response across bins of the vector. i.e. say, for 
C major, one would expect the bins corresponding to the 
white keys to be strong and those of the black keys to be 
weak.  On the other hand, atonal pieces would have a 
more uniform spread across the bins. The chroma va-
riance feature performed at 84.9% accuracy. The same 
reasoning does not really apply to the spectrum vectors 
because they are fairly sparse compared to the chroma 
vectors but nevertheless we tested the feature and ob-
tained 64.4% accuracy; very low as expected.  

5. CONCLUSION 

In this paper we have discussed a method based on Dif-
fusion Maps to perform tonal-atonal classification of mu-
sic audio. Initially, we learn a low-dimensional structure 
representing pitch distributions that pertain to the tonal 
idiom. We then extend the learned mapping to new points 
and test the performance of the method. The learned cyc-
lic structure is demonstrated through a display of the pro-
jected circular constellation of the training points and the 
projection of major scale templates representing ideal key 
locations in relation to this constellation. The use of the 
learned cyclic structure in quantifying tonalness is also 
discussed. Finally, results are presented for the tonal-
atonal classification task for chroma representations as 
well as raw spectral representations. The results are en-
couraging and promising. Future work involves exploring 
more general mechanisms for calculating the structure 
similarity between training and test structures, and find-
ing optimal training sets for faster and more efficient op-
eration. 

6. REFERENCES 

[1] D. Temperley: "The Tonal Properties of Pitch-
Class Sets: Tonal Implication, Tonal Ambiguity, 
and Tonalness," Eleanor Selfridge-Field and Wal-
ter Hewlett, eds. Computing in Musicology, Tonal 
Theory for the Digital Age, Vol. 15, 24-38, 2008. 

[2] E. Gómez: “Tonal Description of Music Audio 
Signals,” Ph.D. Dissertation, Pompeu Fabra Uni-
versity, Barcelona, 2006. 

[3] Ö. İzmirli: “Audio Key Finding Using Low-
Dimensional Spaces,” Proceedings of the Interna-
tional Conference on Music Information Re-
trieval, Victoria, Canada, 2006. 

[4] H. Purwins: "Profiles of Pitch Classes Circularity 
of Relative Pitch and Key – Experiments, Models, 
Computational Music Analysis, and Perspectives," 
Ph.D. Thesis, Berlin University of Technology, 
2005. 

[5] R. R. Coifman and S. Lafon: "Diffusion Maps," 
Applied and Computational  Harmonic Analysis, 
21, pp. 5–30, July, 2006. 

[6] S. Lafon: "Diffusion Maps and Geometric Har-
monics," Ph.D. Thesis, Yale University, New Ha-
ven, USA, 2004.  

[7] A. Singer, R. Erban, I. Kevrekidis and R. Coif-
man: "Detecting Intrinsic Slow Variables in Sto-
chastic Dynamical Systems by Anisotropic Diffu-
sion Maps," Proceedings of the National Academy 
of Sciences (PNAS) 2009.  

[8] Y. Bengio, J.-F. Paiement, and P. Vincent: "Out-
of-sample extensions for LLE, Isomap, MDS, Ei-
genmaps and Spectral Clustering," Advances in 
Neural Information Processing Systems, 16, 2004. 

[9] F. Lerdahl: Tonal Pitch Space. New York: Oxford 
University Press, 2001. 

[10] H. Purwins, B. Blankertz, K. Obermayer: 
"Toroidal Models in Tonal Theory and Pitch-
Class Analysis," Eleanor Selfridge-Field and 
Walter Hewlett, eds. Computing in Musicology, 
Tonal Theory for the Digital Age, Vol. 15, 73-98, 
2008. 

[11] Ö. İzmirli: "Cyclic Distance Patterns Among 
Spectra of Diatonic Sets: The Case of Instrument 
Sounds with Major and Minor Scales," Eleanor 
Selfridge-Field and Walter Hewlett, eds. 
Computing in Musicology, Tonal Theory for the 
Digital Age, Vol. 15, 11-23, 2008. 

[12] T. Fujishima: "Realtime Chord Recognition of 
Musical Sound: A System Using Common Lisp 
Music," Proceedings of the International 
Computer Music Conference (ICMC), Beijing, 
China, 1999. 

[13] Ö. İzmirli: "Template Based Key Finding From 
Audio,” Proceedings of the International 
Computer Music Conference (ICMC), Barcelona, 
Spain, 2005. 

[14] Ö. İzmirli: “An Algorithm for Audio Key 
Finding,” 2005 Music Information Retrieval 
Evaluation eXchange (MIREX) Audio Key-
Finding Contest, www.music-ir.org/evaluation/ 
mirex-results/articles/key_audio/izmirli.pdf, 2005. 

[15] Ö. İzmirli: "Estimating the Tonalness of 
Transpositional Type Pitch-Class Sets Using 
Learned Tonal Key Spaces," Proceedings of 
Mathematics and Computation in Music, New 
Haven, USA, 2009. 

691


